Solve for t
t=-12
t=8
Share
Copied to clipboard
-\frac{3}{8}t^{2}-\frac{3}{2}t+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\left(-\frac{3}{8}\right)\times 36}}{2\left(-\frac{3}{8}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{8} for a, -\frac{3}{2} for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\left(-\frac{3}{8}\right)\times 36}}{2\left(-\frac{3}{8}\right)}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+\frac{3}{2}\times 36}}{2\left(-\frac{3}{8}\right)}
Multiply -4 times -\frac{3}{8}.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}+54}}{2\left(-\frac{3}{8}\right)}
Multiply \frac{3}{2} times 36.
t=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{225}{4}}}{2\left(-\frac{3}{8}\right)}
Add \frac{9}{4} to 54.
t=\frac{-\left(-\frac{3}{2}\right)±\frac{15}{2}}{2\left(-\frac{3}{8}\right)}
Take the square root of \frac{225}{4}.
t=\frac{\frac{3}{2}±\frac{15}{2}}{2\left(-\frac{3}{8}\right)}
The opposite of -\frac{3}{2} is \frac{3}{2}.
t=\frac{\frac{3}{2}±\frac{15}{2}}{-\frac{3}{4}}
Multiply 2 times -\frac{3}{8}.
t=\frac{9}{-\frac{3}{4}}
Now solve the equation t=\frac{\frac{3}{2}±\frac{15}{2}}{-\frac{3}{4}} when ± is plus. Add \frac{3}{2} to \frac{15}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=-12
Divide 9 by -\frac{3}{4} by multiplying 9 by the reciprocal of -\frac{3}{4}.
t=-\frac{6}{-\frac{3}{4}}
Now solve the equation t=\frac{\frac{3}{2}±\frac{15}{2}}{-\frac{3}{4}} when ± is minus. Subtract \frac{15}{2} from \frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=8
Divide -6 by -\frac{3}{4} by multiplying -6 by the reciprocal of -\frac{3}{4}.
t=-12 t=8
The equation is now solved.
-\frac{3}{8}t^{2}-\frac{3}{2}t+36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{8}t^{2}-\frac{3}{2}t+36-36=-36
Subtract 36 from both sides of the equation.
-\frac{3}{8}t^{2}-\frac{3}{2}t=-36
Subtracting 36 from itself leaves 0.
\frac{-\frac{3}{8}t^{2}-\frac{3}{2}t}{-\frac{3}{8}}=-\frac{36}{-\frac{3}{8}}
Divide both sides of the equation by -\frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{\frac{3}{2}}{-\frac{3}{8}}\right)t=-\frac{36}{-\frac{3}{8}}
Dividing by -\frac{3}{8} undoes the multiplication by -\frac{3}{8}.
t^{2}+4t=-\frac{36}{-\frac{3}{8}}
Divide -\frac{3}{2} by -\frac{3}{8} by multiplying -\frac{3}{2} by the reciprocal of -\frac{3}{8}.
t^{2}+4t=96
Divide -36 by -\frac{3}{8} by multiplying -36 by the reciprocal of -\frac{3}{8}.
t^{2}+4t+2^{2}=96+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+4t+4=96+4
Square 2.
t^{2}+4t+4=100
Add 96 to 4.
\left(t+2\right)^{2}=100
Factor t^{2}+4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+2\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
t+2=10 t+2=-10
Simplify.
t=8 t=-12
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}