Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-\frac{3}{8}t^{2}+\frac{3}{2}t+36=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{3}{8}\right)\times 36}}{2\left(-\frac{3}{8}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{8} for a, \frac{3}{2} for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{3}{8}\right)\times 36}}{2\left(-\frac{3}{8}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
t=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+\frac{3}{2}\times 36}}{2\left(-\frac{3}{8}\right)}
Multiply -4 times -\frac{3}{8}.
t=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+54}}{2\left(-\frac{3}{8}\right)}
Multiply \frac{3}{2} times 36.
t=\frac{-\frac{3}{2}±\sqrt{\frac{225}{4}}}{2\left(-\frac{3}{8}\right)}
Add \frac{9}{4} to 54.
t=\frac{-\frac{3}{2}±\frac{15}{2}}{2\left(-\frac{3}{8}\right)}
Take the square root of \frac{225}{4}.
t=\frac{-\frac{3}{2}±\frac{15}{2}}{-\frac{3}{4}}
Multiply 2 times -\frac{3}{8}.
t=\frac{6}{-\frac{3}{4}}
Now solve the equation t=\frac{-\frac{3}{2}±\frac{15}{2}}{-\frac{3}{4}} when ± is plus. Add -\frac{3}{2} to \frac{15}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=-8
Divide 6 by -\frac{3}{4} by multiplying 6 by the reciprocal of -\frac{3}{4}.
t=-\frac{9}{-\frac{3}{4}}
Now solve the equation t=\frac{-\frac{3}{2}±\frac{15}{2}}{-\frac{3}{4}} when ± is minus. Subtract \frac{15}{2} from -\frac{3}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
t=12
Divide -9 by -\frac{3}{4} by multiplying -9 by the reciprocal of -\frac{3}{4}.
t=-8 t=12
The equation is now solved.
-\frac{3}{8}t^{2}+\frac{3}{2}t+36=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{8}t^{2}+\frac{3}{2}t+36-36=-36
Subtract 36 from both sides of the equation.
-\frac{3}{8}t^{2}+\frac{3}{2}t=-36
Subtracting 36 from itself leaves 0.
\frac{-\frac{3}{8}t^{2}+\frac{3}{2}t}{-\frac{3}{8}}=-\frac{36}{-\frac{3}{8}}
Divide both sides of the equation by -\frac{3}{8}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{\frac{3}{2}}{-\frac{3}{8}}t=-\frac{36}{-\frac{3}{8}}
Dividing by -\frac{3}{8} undoes the multiplication by -\frac{3}{8}.
t^{2}-4t=-\frac{36}{-\frac{3}{8}}
Divide \frac{3}{2} by -\frac{3}{8} by multiplying \frac{3}{2} by the reciprocal of -\frac{3}{8}.
t^{2}-4t=96
Divide -36 by -\frac{3}{8} by multiplying -36 by the reciprocal of -\frac{3}{8}.
t^{2}-4t+\left(-2\right)^{2}=96+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-4t+4=96+4
Square -2.
t^{2}-4t+4=100
Add 96 to 4.
\left(t-2\right)^{2}=100
Factor t^{2}-4t+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-2\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
t-2=10 t-2=-10
Simplify.
t=12 t=-8
Add 2 to both sides of the equation.