Evaluate
3
Factor
3
Share
Copied to clipboard
-\frac{57}{133}+\frac{98}{133}-\frac{4}{7}+\frac{3\times 19+5}{19}
Least common multiple of 7 and 19 is 133. Convert -\frac{3}{7} and \frac{14}{19} to fractions with denominator 133.
\frac{-57+98}{133}-\frac{4}{7}+\frac{3\times 19+5}{19}
Since -\frac{57}{133} and \frac{98}{133} have the same denominator, add them by adding their numerators.
\frac{41}{133}-\frac{4}{7}+\frac{3\times 19+5}{19}
Add -57 and 98 to get 41.
\frac{41}{133}-\frac{76}{133}+\frac{3\times 19+5}{19}
Least common multiple of 133 and 7 is 133. Convert \frac{41}{133} and \frac{4}{7} to fractions with denominator 133.
\frac{41-76}{133}+\frac{3\times 19+5}{19}
Since \frac{41}{133} and \frac{76}{133} have the same denominator, subtract them by subtracting their numerators.
\frac{-35}{133}+\frac{3\times 19+5}{19}
Subtract 76 from 41 to get -35.
-\frac{5}{19}+\frac{3\times 19+5}{19}
Reduce the fraction \frac{-35}{133} to lowest terms by extracting and canceling out 7.
-\frac{5}{19}+\frac{57+5}{19}
Multiply 3 and 19 to get 57.
-\frac{5}{19}+\frac{62}{19}
Add 57 and 5 to get 62.
\frac{-5+62}{19}
Since -\frac{5}{19} and \frac{62}{19} have the same denominator, add them by adding their numerators.
\frac{57}{19}
Add -5 and 62 to get 57.
3
Divide 57 by 19 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}