Solve for u
u=-\frac{3}{40}=-0.075
Share
Copied to clipboard
\frac{4}{3}u-\frac{1}{2}=-\frac{3}{5}
Swap sides so that all variable terms are on the left hand side.
\frac{4}{3}u=-\frac{3}{5}+\frac{1}{2}
Add \frac{1}{2} to both sides.
\frac{4}{3}u=-\frac{6}{10}+\frac{5}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{3}{5} and \frac{1}{2} to fractions with denominator 10.
\frac{4}{3}u=\frac{-6+5}{10}
Since -\frac{6}{10} and \frac{5}{10} have the same denominator, add them by adding their numerators.
\frac{4}{3}u=-\frac{1}{10}
Add -6 and 5 to get -1.
u=-\frac{1}{10}\times \frac{3}{4}
Multiply both sides by \frac{3}{4}, the reciprocal of \frac{4}{3}.
u=\frac{-3}{10\times 4}
Multiply -\frac{1}{10} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
u=\frac{-3}{40}
Do the multiplications in the fraction \frac{-3}{10\times 4}.
u=-\frac{3}{40}
Fraction \frac{-3}{40} can be rewritten as -\frac{3}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}