Evaluate
\frac{5}{3}\approx 1.666666667
Factor
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Share
Copied to clipboard
-\frac{3}{5}+\frac{\frac{12}{15}+\frac{8}{15}-\frac{1}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Least common multiple of 5 and 15 is 15. Convert \frac{4}{5} and \frac{8}{15} to fractions with denominator 15.
-\frac{3}{5}+\frac{\frac{12+8}{15}-\frac{1}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Since \frac{12}{15} and \frac{8}{15} have the same denominator, add them by adding their numerators.
-\frac{3}{5}+\frac{\frac{20}{15}-\frac{1}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Add 12 and 8 to get 20.
-\frac{3}{5}+\frac{\frac{4}{3}-\frac{1}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Reduce the fraction \frac{20}{15} to lowest terms by extracting and canceling out 5.
-\frac{3}{5}+\frac{\frac{8}{6}-\frac{1}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Least common multiple of 3 and 6 is 6. Convert \frac{4}{3} and \frac{1}{6} to fractions with denominator 6.
-\frac{3}{5}+\frac{\frac{8-1}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Since \frac{8}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{13}{3}-\frac{11}{4}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Subtract 1 from 8 to get 7.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{52}{12}-\frac{33}{12}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Least common multiple of 3 and 4 is 12. Convert \frac{13}{3} and \frac{11}{4} to fractions with denominator 12.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{52-33}{12}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Since \frac{52}{12} and \frac{33}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{19}{12}-1}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Subtract 33 from 52 to get 19.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{19}{12}-\frac{12}{12}}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Convert 1 to fraction \frac{12}{12}.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{19-12}{12}}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Since \frac{19}{12} and \frac{12}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{5}+\frac{\frac{7}{6}}{\frac{7}{12}}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Subtract 12 from 19 to get 7.
-\frac{3}{5}+\frac{7}{6}\times \frac{12}{7}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Divide \frac{7}{6} by \frac{7}{12} by multiplying \frac{7}{6} by the reciprocal of \frac{7}{12}.
-\frac{3}{5}+\frac{7\times 12}{6\times 7}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Multiply \frac{7}{6} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{3}{5}+\frac{12}{6}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Cancel out 7 in both numerator and denominator.
-\frac{3}{5}+2+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Divide 12 by 6 to get 2.
-\frac{3}{5}+\frac{10}{5}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Convert 2 to fraction \frac{10}{5}.
\frac{-3+10}{5}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Since -\frac{3}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{7}{5}+\frac{8}{3}-\frac{2}{3}\times \frac{18}{5}
Add -3 and 10 to get 7.
\frac{21}{15}+\frac{40}{15}-\frac{2}{3}\times \frac{18}{5}
Least common multiple of 5 and 3 is 15. Convert \frac{7}{5} and \frac{8}{3} to fractions with denominator 15.
\frac{21+40}{15}-\frac{2}{3}\times \frac{18}{5}
Since \frac{21}{15} and \frac{40}{15} have the same denominator, add them by adding their numerators.
\frac{61}{15}-\frac{2}{3}\times \frac{18}{5}
Add 21 and 40 to get 61.
\frac{61}{15}-\frac{2\times 18}{3\times 5}
Multiply \frac{2}{3} times \frac{18}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{61}{15}-\frac{36}{15}
Do the multiplications in the fraction \frac{2\times 18}{3\times 5}.
\frac{61-36}{15}
Since \frac{61}{15} and \frac{36}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{15}
Subtract 36 from 61 to get 25.
\frac{5}{3}
Reduce the fraction \frac{25}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}