Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-\frac{3}{4}a^{2}+\frac{3}{2}a+6=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{3}{4}a^{2}+\frac{3}{2}a+6-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
-\frac{3}{4}a^{2}+\frac{3}{2}a+6-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
-\frac{3}{4}a^{2}+\frac{3}{2}a+9=0
Subtract -3 from 6.
a=\frac{-\frac{3}{2}±\sqrt{\left(\frac{3}{2}\right)^{2}-4\left(-\frac{3}{4}\right)\times 9}}{2\left(-\frac{3}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{4} for a, \frac{3}{2} for b, and 9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}-4\left(-\frac{3}{4}\right)\times 9}}{2\left(-\frac{3}{4}\right)}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+3\times 9}}{2\left(-\frac{3}{4}\right)}
Multiply -4 times -\frac{3}{4}.
a=\frac{-\frac{3}{2}±\sqrt{\frac{9}{4}+27}}{2\left(-\frac{3}{4}\right)}
Multiply 3 times 9.
a=\frac{-\frac{3}{2}±\sqrt{\frac{117}{4}}}{2\left(-\frac{3}{4}\right)}
Add \frac{9}{4} to 27.
a=\frac{-\frac{3}{2}±\frac{3\sqrt{13}}{2}}{2\left(-\frac{3}{4}\right)}
Take the square root of \frac{117}{4}.
a=\frac{-\frac{3}{2}±\frac{3\sqrt{13}}{2}}{-\frac{3}{2}}
Multiply 2 times -\frac{3}{4}.
a=\frac{3\sqrt{13}-3}{-\frac{3}{2}\times 2}
Now solve the equation a=\frac{-\frac{3}{2}±\frac{3\sqrt{13}}{2}}{-\frac{3}{2}} when ± is plus. Add -\frac{3}{2} to \frac{3\sqrt{13}}{2}.
a=1-\sqrt{13}
Divide \frac{-3+3\sqrt{13}}{2} by -\frac{3}{2} by multiplying \frac{-3+3\sqrt{13}}{2} by the reciprocal of -\frac{3}{2}.
a=\frac{-3\sqrt{13}-3}{-\frac{3}{2}\times 2}
Now solve the equation a=\frac{-\frac{3}{2}±\frac{3\sqrt{13}}{2}}{-\frac{3}{2}} when ± is minus. Subtract \frac{3\sqrt{13}}{2} from -\frac{3}{2}.
a=\sqrt{13}+1
Divide \frac{-3-3\sqrt{13}}{2} by -\frac{3}{2} by multiplying \frac{-3-3\sqrt{13}}{2} by the reciprocal of -\frac{3}{2}.
a=1-\sqrt{13} a=\sqrt{13}+1
The equation is now solved.
-\frac{3}{4}a^{2}+\frac{3}{2}a+6=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{4}a^{2}+\frac{3}{2}a+6-6=-3-6
Subtract 6 from both sides of the equation.
-\frac{3}{4}a^{2}+\frac{3}{2}a=-3-6
Subtracting 6 from itself leaves 0.
-\frac{3}{4}a^{2}+\frac{3}{2}a=-9
Subtract 6 from -3.
\frac{-\frac{3}{4}a^{2}+\frac{3}{2}a}{-\frac{3}{4}}=-\frac{9}{-\frac{3}{4}}
Divide both sides of the equation by -\frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
a^{2}+\frac{\frac{3}{2}}{-\frac{3}{4}}a=-\frac{9}{-\frac{3}{4}}
Dividing by -\frac{3}{4} undoes the multiplication by -\frac{3}{4}.
a^{2}-2a=-\frac{9}{-\frac{3}{4}}
Divide \frac{3}{2} by -\frac{3}{4} by multiplying \frac{3}{2} by the reciprocal of -\frac{3}{4}.
a^{2}-2a=12
Divide -9 by -\frac{3}{4} by multiplying -9 by the reciprocal of -\frac{3}{4}.
a^{2}-2a+1=12+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-2a+1=13
Add 12 to 1.
\left(a-1\right)^{2}=13
Factor a^{2}-2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-1\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
a-1=\sqrt{13} a-1=-\sqrt{13}
Simplify.
a=\sqrt{13}+1 a=1-\sqrt{13}
Add 1 to both sides of the equation.