Solve for c
c=\frac{1}{2}=0.5
Share
Copied to clipboard
-\frac{3}{4}\times 4c-\frac{3}{4}\left(-4\right)+\frac{7}{8}c=\frac{31}{16}
Use the distributive property to multiply -\frac{3}{4} by 4c-4.
-3c-\frac{3}{4}\left(-4\right)+\frac{7}{8}c=\frac{31}{16}
Cancel out 4 and 4.
-3c+\frac{-3\left(-4\right)}{4}+\frac{7}{8}c=\frac{31}{16}
Express -\frac{3}{4}\left(-4\right) as a single fraction.
-3c+\frac{12}{4}+\frac{7}{8}c=\frac{31}{16}
Multiply -3 and -4 to get 12.
-3c+3+\frac{7}{8}c=\frac{31}{16}
Divide 12 by 4 to get 3.
-\frac{17}{8}c+3=\frac{31}{16}
Combine -3c and \frac{7}{8}c to get -\frac{17}{8}c.
-\frac{17}{8}c=\frac{31}{16}-3
Subtract 3 from both sides.
-\frac{17}{8}c=\frac{31}{16}-\frac{48}{16}
Convert 3 to fraction \frac{48}{16}.
-\frac{17}{8}c=\frac{31-48}{16}
Since \frac{31}{16} and \frac{48}{16} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{8}c=-\frac{17}{16}
Subtract 48 from 31 to get -17.
c=-\frac{17}{16}\left(-\frac{8}{17}\right)
Multiply both sides by -\frac{8}{17}, the reciprocal of -\frac{17}{8}.
c=\frac{-17\left(-8\right)}{16\times 17}
Multiply -\frac{17}{16} times -\frac{8}{17} by multiplying numerator times numerator and denominator times denominator.
c=\frac{136}{272}
Do the multiplications in the fraction \frac{-17\left(-8\right)}{16\times 17}.
c=\frac{1}{2}
Reduce the fraction \frac{136}{272} to lowest terms by extracting and canceling out 136.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}