Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
1+\frac{2}{3}x=-\frac{1}{2}\left(-\frac{4}{3}\right)
Multiply both sides by -\frac{4}{3}, the reciprocal of -\frac{3}{4}.
1+\frac{2}{3}x=\frac{-\left(-4\right)}{2\times 3}
Multiply -\frac{1}{2} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
1+\frac{2}{3}x=\frac{4}{6}
Do the multiplications in the fraction \frac{-\left(-4\right)}{2\times 3}.
1+\frac{2}{3}x=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{2}{3}x=\frac{2}{3}-1
Subtract 1 from both sides.
\frac{2}{3}x=\frac{2}{3}-\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{2}{3}x=\frac{2-3}{3}
Since \frac{2}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{3}x=-\frac{1}{3}
Subtract 3 from 2 to get -1.
x=-\frac{1}{3}\times \frac{3}{2}
Multiply both sides by \frac{3}{2}, the reciprocal of \frac{2}{3}.
x=\frac{-3}{3\times 2}
Multiply -\frac{1}{3} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-1}{2}
Cancel out 3 in both numerator and denominator.
x=-\frac{1}{2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}