Evaluate
39.4918
Factor
\frac{379 \cdot 521}{2 ^ {3} \cdot 5 ^ {4}} = 39\frac{2459}{5000} = 39.4918
Share
Copied to clipboard
\frac{\frac{-\frac{3}{4}\times \frac{50+21}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply 2 and 25 to get 50.
\frac{\frac{-\frac{3}{4}\times \frac{71}{25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Add 50 and 21 to get 71.
\frac{\frac{\frac{-3\times 71}{4\times 25}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply -\frac{3}{4} times \frac{71}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{-213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Do the multiplications in the fraction \frac{-3\times 71}{4\times 25}.
\frac{\frac{-\frac{213}{100}}{\frac{3\times 5+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Fraction \frac{-213}{100} can be rewritten as -\frac{213}{100} by extracting the negative sign.
\frac{\frac{-\frac{213}{100}}{\frac{15+3}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply 3 and 5 to get 15.
\frac{\frac{-\frac{213}{100}}{\frac{18}{5}}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Add 15 and 3 to get 18.
\frac{-\frac{213}{100}\times \frac{5}{18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Divide -\frac{213}{100} by \frac{18}{5} by multiplying -\frac{213}{100} by the reciprocal of \frac{18}{5}.
\frac{\frac{-213\times 5}{100\times 18}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply -\frac{213}{100} times \frac{5}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-1065}{1800}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Do the multiplications in the fraction \frac{-213\times 5}{100\times 18}.
\frac{-\frac{71}{120}}{-\frac{1\times 2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Reduce the fraction \frac{-1065}{1800} to lowest terms by extracting and canceling out 15.
\frac{-\frac{71}{120}}{-\frac{2+1}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply 1 and 2 to get 2.
\frac{-\frac{71}{120}}{-\frac{3}{2}}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Add 2 and 1 to get 3.
-\frac{71}{120}\left(-\frac{2}{3}\right)\times \frac{50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Divide -\frac{71}{120} by -\frac{3}{2} by multiplying -\frac{71}{120} by the reciprocal of -\frac{3}{2}.
\frac{-71\left(-2\right)}{120\times 3}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply -\frac{71}{120} times -\frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{142}{360}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Do the multiplications in the fraction \frac{-71\left(-2\right)}{120\times 3}.
\frac{71}{180}\times \frac{1\times 50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Reduce the fraction \frac{142}{360} to lowest terms by extracting and canceling out 2.
\frac{71}{180}\times \frac{50+21}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply 1 and 50 to get 50.
\frac{71}{180}\times \frac{71}{50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Add 50 and 21 to get 71.
\frac{71\times 71}{180\times 50}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply \frac{71}{180} times \frac{71}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{5041}{9000}\left(-1.8\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Do the multiplications in the fraction \frac{71\times 71}{180\times 50}.
\frac{5041}{9000}\left(-\frac{9}{5}\right)-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Convert decimal number -1.8 to fraction -\frac{18}{10}. Reduce the fraction -\frac{18}{10} to lowest terms by extracting and canceling out 2.
\frac{5041\left(-9\right)}{9000\times 5}-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Multiply \frac{5041}{9000} times -\frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-45369}{45000}-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Do the multiplications in the fraction \frac{5041\left(-9\right)}{9000\times 5}.
-\frac{5041}{5000}-\left(-2\right)^{2}\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Reduce the fraction \frac{-45369}{45000} to lowest terms by extracting and canceling out 9.
-\frac{5041}{5000}-4\times 2.5\left(-\frac{4\times 20+1}{20}\right)
Calculate -2 to the power of 2 and get 4.
-\frac{5041}{5000}-10\left(-\frac{4\times 20+1}{20}\right)
Multiply 4 and 2.5 to get 10.
-\frac{5041}{5000}-10\left(-\frac{80+1}{20}\right)
Multiply 4 and 20 to get 80.
-\frac{5041}{5000}-10\left(-\frac{81}{20}\right)
Add 80 and 1 to get 81.
-\frac{5041}{5000}-\frac{10\left(-81\right)}{20}
Express 10\left(-\frac{81}{20}\right) as a single fraction.
-\frac{5041}{5000}-\frac{-810}{20}
Multiply 10 and -81 to get -810.
-\frac{5041}{5000}-\left(-\frac{81}{2}\right)
Reduce the fraction \frac{-810}{20} to lowest terms by extracting and canceling out 10.
-\frac{5041}{5000}+\frac{81}{2}
The opposite of -\frac{81}{2} is \frac{81}{2}.
-\frac{5041}{5000}+\frac{202500}{5000}
Least common multiple of 5000 and 2 is 5000. Convert -\frac{5041}{5000} and \frac{81}{2} to fractions with denominator 5000.
\frac{-5041+202500}{5000}
Since -\frac{5041}{5000} and \frac{202500}{5000} have the same denominator, add them by adding their numerators.
\frac{197459}{5000}
Add -5041 and 202500 to get 197459.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}