- \frac { 3 } { 4 } \cdot ( - 1,5 - \frac { 3 } { 5 } ) - 1 \div \frac { 3 } { 2 } + 5 \cdot 0,18 =
Evaluate
\frac{217}{120}\approx 1,808333333
Factor
\frac{7 \cdot 31}{3 \cdot 5 \cdot 2 ^ {3}} = 1\frac{97}{120} = 1.8083333333333333
Share
Copied to clipboard
-\frac{3}{4}\left(-\frac{3}{2}-\frac{3}{5}\right)-\frac{1}{\frac{3}{2}}+5\times 0,18
Convert decimal number -1,5 to fraction -\frac{15}{10}. Reduce the fraction -\frac{15}{10} to lowest terms by extracting and canceling out 5.
-\frac{3}{4}\left(-\frac{15}{10}-\frac{6}{10}\right)-\frac{1}{\frac{3}{2}}+5\times 0,18
Least common multiple of 2 and 5 is 10. Convert -\frac{3}{2} and \frac{3}{5} to fractions with denominator 10.
-\frac{3}{4}\times \frac{-15-6}{10}-\frac{1}{\frac{3}{2}}+5\times 0,18
Since -\frac{15}{10} and \frac{6}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{3}{4}\left(-\frac{21}{10}\right)-\frac{1}{\frac{3}{2}}+5\times 0,18
Subtract 6 from -15 to get -21.
\frac{-3\left(-21\right)}{4\times 10}-\frac{1}{\frac{3}{2}}+5\times 0,18
Multiply -\frac{3}{4} times -\frac{21}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{63}{40}-\frac{1}{\frac{3}{2}}+5\times 0,18
Do the multiplications in the fraction \frac{-3\left(-21\right)}{4\times 10}.
\frac{63}{40}-1\times \frac{2}{3}+5\times 0,18
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{63}{40}-\frac{2}{3}+5\times 0,18
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{189}{120}-\frac{80}{120}+5\times 0,18
Least common multiple of 40 and 3 is 120. Convert \frac{63}{40} and \frac{2}{3} to fractions with denominator 120.
\frac{189-80}{120}+5\times 0,18
Since \frac{189}{120} and \frac{80}{120} have the same denominator, subtract them by subtracting their numerators.
\frac{109}{120}+5\times 0,18
Subtract 80 from 189 to get 109.
\frac{109}{120}+0,9
Multiply 5 and 0,18 to get 0,9.
\frac{109}{120}+\frac{9}{10}
Convert decimal number 0,9 to fraction \frac{9}{10}.
\frac{109}{120}+\frac{108}{120}
Least common multiple of 120 and 10 is 120. Convert \frac{109}{120} and \frac{9}{10} to fractions with denominator 120.
\frac{109+108}{120}
Since \frac{109}{120} and \frac{108}{120} have the same denominator, add them by adding their numerators.
\frac{217}{120}
Add 109 and 108 to get 217.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}