Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Graph
Share
Copied to clipboard
-\frac{3}{4}\times 5=3x
Multiply both sides by 5.
\frac{-3\times 5}{4}=3x
Express -\frac{3}{4}\times 5 as a single fraction.
\frac{-15}{4}=3x
Multiply -3 and 5 to get -15.
-\frac{15}{4}=3x
Fraction \frac{-15}{4} can be rewritten as -\frac{15}{4} by extracting the negative sign.
3x=-\frac{15}{4}
Swap sides so that all variable terms are on the left hand side.
x=\frac{-\frac{15}{4}}{3}
Divide both sides by 3.
x=\frac{-15}{4\times 3}
Express \frac{-\frac{15}{4}}{3} as a single fraction.
x=\frac{-15}{12}
Multiply 4 and 3 to get 12.
x=-\frac{5}{4}
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}