Solve for x
x = \frac{\sqrt{39} + 8}{5} \approx 2.8489996
x=\frac{8-\sqrt{39}}{5}\approx 0.3510004
Graph
Share
Copied to clipboard
-x^{2}+\frac{16}{5}x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{16}{5}±\sqrt{\left(\frac{16}{5}\right)^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, \frac{16}{5} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{16}{5}±\sqrt{\frac{256}{25}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Square \frac{16}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{16}{5}±\sqrt{\frac{256}{25}+4\left(-1\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\frac{16}{5}±\sqrt{\frac{256}{25}-4}}{2\left(-1\right)}
Multiply 4 times -1.
x=\frac{-\frac{16}{5}±\sqrt{\frac{156}{25}}}{2\left(-1\right)}
Add \frac{256}{25} to -4.
x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{2\left(-1\right)}
Take the square root of \frac{156}{25}.
x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{39}-16}{-2\times 5}
Now solve the equation x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{-2} when ± is plus. Add -\frac{16}{5} to \frac{2\sqrt{39}}{5}.
x=\frac{8-\sqrt{39}}{5}
Divide \frac{-16+2\sqrt{39}}{5} by -2.
x=\frac{-2\sqrt{39}-16}{-2\times 5}
Now solve the equation x=\frac{-\frac{16}{5}±\frac{2\sqrt{39}}{5}}{-2} when ± is minus. Subtract \frac{2\sqrt{39}}{5} from -\frac{16}{5}.
x=\frac{\sqrt{39}+8}{5}
Divide \frac{-16-2\sqrt{39}}{5} by -2.
x=\frac{8-\sqrt{39}}{5} x=\frac{\sqrt{39}+8}{5}
The equation is now solved.
-x^{2}+\frac{16}{5}x-1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-x^{2}+\frac{16}{5}x-1-\left(-1\right)=-\left(-1\right)
Add 1 to both sides of the equation.
-x^{2}+\frac{16}{5}x=-\left(-1\right)
Subtracting -1 from itself leaves 0.
-x^{2}+\frac{16}{5}x=1
Subtract -1 from 0.
\frac{-x^{2}+\frac{16}{5}x}{-1}=\frac{1}{-1}
Divide both sides by -1.
x^{2}+\frac{\frac{16}{5}}{-1}x=\frac{1}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-\frac{16}{5}x=\frac{1}{-1}
Divide \frac{16}{5} by -1.
x^{2}-\frac{16}{5}x=-1
Divide 1 by -1.
x^{2}-\frac{16}{5}x+\left(-\frac{8}{5}\right)^{2}=-1+\left(-\frac{8}{5}\right)^{2}
Divide -\frac{16}{5}, the coefficient of the x term, by 2 to get -\frac{8}{5}. Then add the square of -\frac{8}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{16}{5}x+\frac{64}{25}=-1+\frac{64}{25}
Square -\frac{8}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{16}{5}x+\frac{64}{25}=\frac{39}{25}
Add -1 to \frac{64}{25}.
\left(x-\frac{8}{5}\right)^{2}=\frac{39}{25}
Factor x^{2}-\frac{16}{5}x+\frac{64}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8}{5}\right)^{2}}=\sqrt{\frac{39}{25}}
Take the square root of both sides of the equation.
x-\frac{8}{5}=\frac{\sqrt{39}}{5} x-\frac{8}{5}=-\frac{\sqrt{39}}{5}
Simplify.
x=\frac{\sqrt{39}+8}{5} x=\frac{8-\sqrt{39}}{5}
Add \frac{8}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}