Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{3}{2}y+1-\left(y^{2}+3y+\frac{9}{4}\right)+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+\frac{3}{2}\right)^{2}.
-\frac{3}{2}y+1-y^{2}-3y-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
To find the opposite of y^{2}+3y+\frac{9}{4}, find the opposite of each term.
-\frac{9}{2}y+1-y^{2}-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Combine -\frac{3}{2}y and -3y to get -\frac{9}{2}y.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{9}{4} from 1 to get -\frac{5}{4}.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+y^{2}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Consider \left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{4}.
-\frac{9}{2}y-\frac{5}{4}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Combine -y^{2} and y^{2} to get 0.
-\frac{9}{2}y-\frac{21}{16}+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{1}{16} from -\frac{5}{4} to get -\frac{21}{16}.
-3y-\frac{21}{16}-\frac{1}{16}
Combine -\frac{9}{2}y and \frac{3}{2}y to get -3y.
-3y-\frac{11}{8}
Subtract \frac{1}{16} from -\frac{21}{16} to get -\frac{11}{8}.
-\frac{3}{2}y+1-\left(y^{2}+3y+\frac{9}{4}\right)+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+\frac{3}{2}\right)^{2}.
-\frac{3}{2}y+1-y^{2}-3y-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
To find the opposite of y^{2}+3y+\frac{9}{4}, find the opposite of each term.
-\frac{9}{2}y+1-y^{2}-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Combine -\frac{3}{2}y and -3y to get -\frac{9}{2}y.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{9}{4} from 1 to get -\frac{5}{4}.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+y^{2}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Consider \left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{4}.
-\frac{9}{2}y-\frac{5}{4}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Combine -y^{2} and y^{2} to get 0.
-\frac{9}{2}y-\frac{21}{16}+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{1}{16} from -\frac{5}{4} to get -\frac{21}{16}.
-3y-\frac{21}{16}-\frac{1}{16}
Combine -\frac{9}{2}y and \frac{3}{2}y to get -3y.
-3y-\frac{11}{8}
Subtract \frac{1}{16} from -\frac{21}{16} to get -\frac{11}{8}.