Evaluate
-3y-\frac{11}{8}
Expand
-3y-\frac{11}{8}
Graph
Share
Copied to clipboard
-\frac{3}{2}y+1-\left(y^{2}+3y+\frac{9}{4}\right)+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+\frac{3}{2}\right)^{2}.
-\frac{3}{2}y+1-y^{2}-3y-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
To find the opposite of y^{2}+3y+\frac{9}{4}, find the opposite of each term.
-\frac{9}{2}y+1-y^{2}-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Combine -\frac{3}{2}y and -3y to get -\frac{9}{2}y.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{9}{4} from 1 to get -\frac{5}{4}.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+y^{2}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Consider \left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{4}.
-\frac{9}{2}y-\frac{5}{4}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Combine -y^{2} and y^{2} to get 0.
-\frac{9}{2}y-\frac{21}{16}+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{1}{16} from -\frac{5}{4} to get -\frac{21}{16}.
-3y-\frac{21}{16}-\frac{1}{16}
Combine -\frac{9}{2}y and \frac{3}{2}y to get -3y.
-3y-\frac{11}{8}
Subtract \frac{1}{16} from -\frac{21}{16} to get -\frac{11}{8}.
-\frac{3}{2}y+1-\left(y^{2}+3y+\frac{9}{4}\right)+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(y+\frac{3}{2}\right)^{2}.
-\frac{3}{2}y+1-y^{2}-3y-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
To find the opposite of y^{2}+3y+\frac{9}{4}, find the opposite of each term.
-\frac{9}{2}y+1-y^{2}-\frac{9}{4}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Combine -\frac{3}{2}y and -3y to get -\frac{9}{2}y.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+\left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right)+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{9}{4} from 1 to get -\frac{5}{4}.
-\frac{9}{2}y-\frac{5}{4}-y^{2}+y^{2}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Consider \left(y-\frac{1}{4}\right)\left(y+\frac{1}{4}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square \frac{1}{4}.
-\frac{9}{2}y-\frac{5}{4}-\frac{1}{16}+\frac{3}{2}y-\frac{1}{16}
Combine -y^{2} and y^{2} to get 0.
-\frac{9}{2}y-\frac{21}{16}+\frac{3}{2}y-\frac{1}{16}
Subtract \frac{1}{16} from -\frac{5}{4} to get -\frac{21}{16}.
-3y-\frac{21}{16}-\frac{1}{16}
Combine -\frac{9}{2}y and \frac{3}{2}y to get -3y.
-3y-\frac{11}{8}
Subtract \frac{1}{16} from -\frac{21}{16} to get -\frac{11}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}