Solve for x
x\geq -\frac{47}{16}
Graph
Quiz
Algebra
5 problems similar to:
- \frac { 3 } { 2 } x - 5 \leq \frac { 1 } { 2 } x + \frac { 7 } { 8 }
Share
Copied to clipboard
-\frac{3}{2}x-5-\frac{1}{2}x\leq \frac{7}{8}
Subtract \frac{1}{2}x from both sides.
-2x-5\leq \frac{7}{8}
Combine -\frac{3}{2}x and -\frac{1}{2}x to get -2x.
-2x\leq \frac{7}{8}+5
Add 5 to both sides.
-2x\leq \frac{7}{8}+\frac{40}{8}
Convert 5 to fraction \frac{40}{8}.
-2x\leq \frac{7+40}{8}
Since \frac{7}{8} and \frac{40}{8} have the same denominator, add them by adding their numerators.
-2x\leq \frac{47}{8}
Add 7 and 40 to get 47.
x\geq \frac{\frac{47}{8}}{-2}
Divide both sides by -2. Since -2 is negative, the inequality direction is changed.
x\geq \frac{47}{8\left(-2\right)}
Express \frac{\frac{47}{8}}{-2} as a single fraction.
x\geq \frac{47}{-16}
Multiply 8 and -2 to get -16.
x\geq -\frac{47}{16}
Fraction \frac{47}{-16} can be rewritten as -\frac{47}{16} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}