Solve for x
x=-\frac{2}{3}\approx -0.666666667
x=-2
Graph
Share
Copied to clipboard
-\frac{3}{2}x^{2}-4x+1=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{3}{2}x^{2}-4x+1-3=3-3
Subtract 3 from both sides of the equation.
-\frac{3}{2}x^{2}-4x+1-3=0
Subtracting 3 from itself leaves 0.
-\frac{3}{2}x^{2}-4x-2=0
Subtract 3 from 1.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-\frac{3}{2}\right)\left(-2\right)}}{2\left(-\frac{3}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{3}{2} for a, -4 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-\frac{3}{2}\right)\left(-2\right)}}{2\left(-\frac{3}{2}\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+6\left(-2\right)}}{2\left(-\frac{3}{2}\right)}
Multiply -4 times -\frac{3}{2}.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2\left(-\frac{3}{2}\right)}
Multiply 6 times -2.
x=\frac{-\left(-4\right)±\sqrt{4}}{2\left(-\frac{3}{2}\right)}
Add 16 to -12.
x=\frac{-\left(-4\right)±2}{2\left(-\frac{3}{2}\right)}
Take the square root of 4.
x=\frac{4±2}{2\left(-\frac{3}{2}\right)}
The opposite of -4 is 4.
x=\frac{4±2}{-3}
Multiply 2 times -\frac{3}{2}.
x=\frac{6}{-3}
Now solve the equation x=\frac{4±2}{-3} when ± is plus. Add 4 to 2.
x=-2
Divide 6 by -3.
x=\frac{2}{-3}
Now solve the equation x=\frac{4±2}{-3} when ± is minus. Subtract 2 from 4.
x=-\frac{2}{3}
Divide 2 by -3.
x=-2 x=-\frac{2}{3}
The equation is now solved.
-\frac{3}{2}x^{2}-4x+1=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{3}{2}x^{2}-4x+1-1=3-1
Subtract 1 from both sides of the equation.
-\frac{3}{2}x^{2}-4x=3-1
Subtracting 1 from itself leaves 0.
-\frac{3}{2}x^{2}-4x=2
Subtract 1 from 3.
\frac{-\frac{3}{2}x^{2}-4x}{-\frac{3}{2}}=\frac{2}{-\frac{3}{2}}
Divide both sides of the equation by -\frac{3}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{4}{-\frac{3}{2}}\right)x=\frac{2}{-\frac{3}{2}}
Dividing by -\frac{3}{2} undoes the multiplication by -\frac{3}{2}.
x^{2}+\frac{8}{3}x=\frac{2}{-\frac{3}{2}}
Divide -4 by -\frac{3}{2} by multiplying -4 by the reciprocal of -\frac{3}{2}.
x^{2}+\frac{8}{3}x=-\frac{4}{3}
Divide 2 by -\frac{3}{2} by multiplying 2 by the reciprocal of -\frac{3}{2}.
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=-\frac{4}{3}+\left(\frac{4}{3}\right)^{2}
Divide \frac{8}{3}, the coefficient of the x term, by 2 to get \frac{4}{3}. Then add the square of \frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{8}{3}x+\frac{16}{9}=-\frac{4}{3}+\frac{16}{9}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{4}{9}
Add -\frac{4}{3} to \frac{16}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{4}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}+\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x+\frac{4}{3}=\frac{2}{3} x+\frac{4}{3}=-\frac{2}{3}
Simplify.
x=-\frac{2}{3} x=-2
Subtract \frac{4}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}