Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{3}{2}x\times 12x+x\times 3=6+12x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 2,12,2x.
-18xx+x\times 3=6+12x\times \frac{1}{2}
Multiply -\frac{3}{2} and 12 to get -18.
-18x^{2}+x\times 3=6+12x\times \frac{1}{2}
Multiply x and x to get x^{2}.
-18x^{2}+x\times 3=6+6x
Multiply 12 and \frac{1}{2} to get 6.
-18x^{2}+x\times 3-6=6x
Subtract 6 from both sides.
-18x^{2}+x\times 3-6-6x=0
Subtract 6x from both sides.
-18x^{2}-3x-6=0
Combine x\times 3 and -6x to get -3x.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-18\right)\left(-6\right)}}{2\left(-18\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18 for a, -3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-18\right)\left(-6\right)}}{2\left(-18\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+72\left(-6\right)}}{2\left(-18\right)}
Multiply -4 times -18.
x=\frac{-\left(-3\right)±\sqrt{9-432}}{2\left(-18\right)}
Multiply 72 times -6.
x=\frac{-\left(-3\right)±\sqrt{-423}}{2\left(-18\right)}
Add 9 to -432.
x=\frac{-\left(-3\right)±3\sqrt{47}i}{2\left(-18\right)}
Take the square root of -423.
x=\frac{3±3\sqrt{47}i}{2\left(-18\right)}
The opposite of -3 is 3.
x=\frac{3±3\sqrt{47}i}{-36}
Multiply 2 times -18.
x=\frac{3+3\sqrt{47}i}{-36}
Now solve the equation x=\frac{3±3\sqrt{47}i}{-36} when ± is plus. Add 3 to 3i\sqrt{47}.
x=\frac{-\sqrt{47}i-1}{12}
Divide 3+3i\sqrt{47} by -36.
x=\frac{-3\sqrt{47}i+3}{-36}
Now solve the equation x=\frac{3±3\sqrt{47}i}{-36} when ± is minus. Subtract 3i\sqrt{47} from 3.
x=\frac{-1+\sqrt{47}i}{12}
Divide 3-3i\sqrt{47} by -36.
x=\frac{-\sqrt{47}i-1}{12} x=\frac{-1+\sqrt{47}i}{12}
The equation is now solved.
-\frac{3}{2}x\times 12x+x\times 3=6+12x\times \frac{1}{2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 12x, the least common multiple of 2,12,2x.
-18xx+x\times 3=6+12x\times \frac{1}{2}
Multiply -\frac{3}{2} and 12 to get -18.
-18x^{2}+x\times 3=6+12x\times \frac{1}{2}
Multiply x and x to get x^{2}.
-18x^{2}+x\times 3=6+6x
Multiply 12 and \frac{1}{2} to get 6.
-18x^{2}+x\times 3-6x=6
Subtract 6x from both sides.
-18x^{2}-3x=6
Combine x\times 3 and -6x to get -3x.
\frac{-18x^{2}-3x}{-18}=\frac{6}{-18}
Divide both sides by -18.
x^{2}+\left(-\frac{3}{-18}\right)x=\frac{6}{-18}
Dividing by -18 undoes the multiplication by -18.
x^{2}+\frac{1}{6}x=\frac{6}{-18}
Reduce the fraction \frac{-3}{-18} to lowest terms by extracting and canceling out 3.
x^{2}+\frac{1}{6}x=-\frac{1}{3}
Reduce the fraction \frac{6}{-18} to lowest terms by extracting and canceling out 6.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{6}x+\frac{1}{144}=-\frac{1}{3}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{6}x+\frac{1}{144}=-\frac{47}{144}
Add -\frac{1}{3} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{12}\right)^{2}=-\frac{47}{144}
Factor x^{2}+\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{-\frac{47}{144}}
Take the square root of both sides of the equation.
x+\frac{1}{12}=\frac{\sqrt{47}i}{12} x+\frac{1}{12}=-\frac{\sqrt{47}i}{12}
Simplify.
x=\frac{-1+\sqrt{47}i}{12} x=\frac{-\sqrt{47}i-1}{12}
Subtract \frac{1}{12} from both sides of the equation.