Solve for u
u = -\frac{64}{27} = -2\frac{10}{27} \approx -2.37037037
Share
Copied to clipboard
-\frac{3}{2}u-5-\frac{3}{4}u=\frac{1}{3}
Subtract \frac{3}{4}u from both sides.
-\frac{9}{4}u-5=\frac{1}{3}
Combine -\frac{3}{2}u and -\frac{3}{4}u to get -\frac{9}{4}u.
-\frac{9}{4}u=\frac{1}{3}+5
Add 5 to both sides.
-\frac{9}{4}u=\frac{1}{3}+\frac{15}{3}
Convert 5 to fraction \frac{15}{3}.
-\frac{9}{4}u=\frac{1+15}{3}
Since \frac{1}{3} and \frac{15}{3} have the same denominator, add them by adding their numerators.
-\frac{9}{4}u=\frac{16}{3}
Add 1 and 15 to get 16.
u=\frac{16}{3}\left(-\frac{4}{9}\right)
Multiply both sides by -\frac{4}{9}, the reciprocal of -\frac{9}{4}.
u=\frac{16\left(-4\right)}{3\times 9}
Multiply \frac{16}{3} times -\frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
u=\frac{-64}{27}
Do the multiplications in the fraction \frac{16\left(-4\right)}{3\times 9}.
u=-\frac{64}{27}
Fraction \frac{-64}{27} can be rewritten as -\frac{64}{27} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}