Solve for u
u = \frac{75}{26} = 2\frac{23}{26} \approx 2.884615385
Share
Copied to clipboard
-\frac{3}{2}u-\frac{3}{4}-\frac{2}{3}u=-7
Subtract \frac{2}{3}u from both sides.
-\frac{13}{6}u-\frac{3}{4}=-7
Combine -\frac{3}{2}u and -\frac{2}{3}u to get -\frac{13}{6}u.
-\frac{13}{6}u=-7+\frac{3}{4}
Add \frac{3}{4} to both sides.
-\frac{13}{6}u=-\frac{28}{4}+\frac{3}{4}
Convert -7 to fraction -\frac{28}{4}.
-\frac{13}{6}u=\frac{-28+3}{4}
Since -\frac{28}{4} and \frac{3}{4} have the same denominator, add them by adding their numerators.
-\frac{13}{6}u=-\frac{25}{4}
Add -28 and 3 to get -25.
u=-\frac{25}{4}\left(-\frac{6}{13}\right)
Multiply both sides by -\frac{6}{13}, the reciprocal of -\frac{13}{6}.
u=\frac{-25\left(-6\right)}{4\times 13}
Multiply -\frac{25}{4} times -\frac{6}{13} by multiplying numerator times numerator and denominator times denominator.
u=\frac{150}{52}
Do the multiplications in the fraction \frac{-25\left(-6\right)}{4\times 13}.
u=\frac{75}{26}
Reduce the fraction \frac{150}{52} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}