Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

-3a^{2}+9a=6
Multiply both sides of the equation by 2.
-3a^{2}+9a-6=0
Subtract 6 from both sides.
-a^{2}+3a-2=0
Divide both sides by 3.
a+b=3 ab=-\left(-2\right)=2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -a^{2}+aa+ba-2. To find a and b, set up a system to be solved.
a=2 b=1
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. The only such pair is the system solution.
\left(-a^{2}+2a\right)+\left(a-2\right)
Rewrite -a^{2}+3a-2 as \left(-a^{2}+2a\right)+\left(a-2\right).
-a\left(a-2\right)+a-2
Factor out -a in -a^{2}+2a.
\left(a-2\right)\left(-a+1\right)
Factor out common term a-2 by using distributive property.
a=2 a=1
To find equation solutions, solve a-2=0 and -a+1=0.
-3a^{2}+9a=6
Multiply both sides of the equation by 2.
-3a^{2}+9a-6=0
Subtract 6 from both sides.
a=\frac{-9±\sqrt{9^{2}-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 9 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-9±\sqrt{81-4\left(-3\right)\left(-6\right)}}{2\left(-3\right)}
Square 9.
a=\frac{-9±\sqrt{81+12\left(-6\right)}}{2\left(-3\right)}
Multiply -4 times -3.
a=\frac{-9±\sqrt{81-72}}{2\left(-3\right)}
Multiply 12 times -6.
a=\frac{-9±\sqrt{9}}{2\left(-3\right)}
Add 81 to -72.
a=\frac{-9±3}{2\left(-3\right)}
Take the square root of 9.
a=\frac{-9±3}{-6}
Multiply 2 times -3.
a=-\frac{6}{-6}
Now solve the equation a=\frac{-9±3}{-6} when ± is plus. Add -9 to 3.
a=1
Divide -6 by -6.
a=-\frac{12}{-6}
Now solve the equation a=\frac{-9±3}{-6} when ± is minus. Subtract 3 from -9.
a=2
Divide -12 by -6.
a=1 a=2
The equation is now solved.
-3a^{2}+9a=6
Multiply both sides of the equation by 2.
\frac{-3a^{2}+9a}{-3}=\frac{6}{-3}
Divide both sides by -3.
a^{2}+\frac{9}{-3}a=\frac{6}{-3}
Dividing by -3 undoes the multiplication by -3.
a^{2}-3a=\frac{6}{-3}
Divide 9 by -3.
a^{2}-3a=-2
Divide 6 by -3.
a^{2}-3a+\left(-\frac{3}{2}\right)^{2}=-2+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-3a+\frac{9}{4}=-2+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-3a+\frac{9}{4}=\frac{1}{4}
Add -2 to \frac{9}{4}.
\left(a-\frac{3}{2}\right)^{2}=\frac{1}{4}
Factor a^{2}-3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{3}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
a-\frac{3}{2}=\frac{1}{2} a-\frac{3}{2}=-\frac{1}{2}
Simplify.
a=2 a=1
Add \frac{3}{2} to both sides of the equation.