Solve for y
y=-\frac{33}{40}=-0.825
Graph
Share
Copied to clipboard
-\frac{4}{3}y=-\frac{2}{5}+\frac{3}{2}
Add \frac{3}{2} to both sides.
-\frac{4}{3}y=-\frac{4}{10}+\frac{15}{10}
Least common multiple of 5 and 2 is 10. Convert -\frac{2}{5} and \frac{3}{2} to fractions with denominator 10.
-\frac{4}{3}y=\frac{-4+15}{10}
Since -\frac{4}{10} and \frac{15}{10} have the same denominator, add them by adding their numerators.
-\frac{4}{3}y=\frac{11}{10}
Add -4 and 15 to get 11.
y=\frac{11}{10}\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}.
y=\frac{11\left(-3\right)}{10\times 4}
Multiply \frac{11}{10} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-33}{40}
Do the multiplications in the fraction \frac{11\left(-3\right)}{10\times 4}.
y=-\frac{33}{40}
Fraction \frac{-33}{40} can be rewritten as -\frac{33}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}