- \frac { 3 } { 2 } + ( - 0,7 ) = - \frac { 3 } { 2 } - \frac { 7 } { 10 } = \frac { - 15 - 7 } { 10 } - \frac { 12 } { 10 } =
Verify
false
Share
Copied to clipboard
-\frac{3}{2}-\frac{7}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Convert decimal number 0,7 to fraction \frac{7}{10}.
-\frac{15}{10}-\frac{7}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{3}{2} and \frac{7}{10} to fractions with denominator 10.
\frac{-15-7}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Since -\frac{15}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{-22}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
-\frac{11}{5}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
-\frac{11}{5}=-\frac{15}{10}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{3}{2} and \frac{7}{10} to fractions with denominator 10.
-\frac{11}{5}=\frac{-15-7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Since -\frac{15}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{5}=\frac{-22}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
-\frac{11}{5}=-\frac{11}{5}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Compare -\frac{11}{5} and -\frac{11}{5}.
\text{true}\text{ and }-\frac{15}{10}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{3}{2} and \frac{7}{10} to fractions with denominator 10.
\text{true}\text{ and }\frac{-15-7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Since -\frac{15}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
\text{true}\text{ and }\frac{-22}{10}=\frac{-15-7}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
\text{true}\text{ and }-\frac{11}{5}=\frac{-15-7}{10}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{11}{5}=\frac{-22}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
\text{true}\text{ and }-\frac{11}{5}=-\frac{11}{5}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{11}{5}=-\frac{11}{5}-\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{11}{5}=\frac{-11-6}{5}
Since -\frac{11}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
\text{true}\text{ and }-\frac{11}{5}=-\frac{17}{5}
Subtract 6 from -11 to get -17.
\text{true}\text{ and }\text{false}
Compare -\frac{11}{5} and -\frac{17}{5}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}