Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

-\frac{3}{2}-\frac{7}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Convert decimal number 0,7 to fraction \frac{7}{10}.
-\frac{15}{10}-\frac{7}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{3}{2} and \frac{7}{10} to fractions with denominator 10.
\frac{-15-7}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Since -\frac{15}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{-22}{10}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
-\frac{11}{5}=-\frac{3}{2}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
-\frac{11}{5}=-\frac{15}{10}-\frac{7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{3}{2} and \frac{7}{10} to fractions with denominator 10.
-\frac{11}{5}=\frac{-15-7}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Since -\frac{15}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{5}=\frac{-22}{10}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
-\frac{11}{5}=-\frac{11}{5}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{3}{2}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Compare -\frac{11}{5} and -\frac{11}{5}.
\text{true}\text{ and }-\frac{15}{10}-\frac{7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Least common multiple of 2 and 10 is 10. Convert -\frac{3}{2} and \frac{7}{10} to fractions with denominator 10.
\text{true}\text{ and }\frac{-15-7}{10}=\frac{-15-7}{10}-\frac{12}{10}
Since -\frac{15}{10} and \frac{7}{10} have the same denominator, subtract them by subtracting their numerators.
\text{true}\text{ and }\frac{-22}{10}=\frac{-15-7}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
\text{true}\text{ and }-\frac{11}{5}=\frac{-15-7}{10}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{11}{5}=\frac{-22}{10}-\frac{12}{10}
Subtract 7 from -15 to get -22.
\text{true}\text{ and }-\frac{11}{5}=-\frac{11}{5}-\frac{12}{10}
Reduce the fraction \frac{-22}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{11}{5}=-\frac{11}{5}-\frac{6}{5}
Reduce the fraction \frac{12}{10} to lowest terms by extracting and canceling out 2.
\text{true}\text{ and }-\frac{11}{5}=\frac{-11-6}{5}
Since -\frac{11}{5} and \frac{6}{5} have the same denominator, subtract them by subtracting their numerators.
\text{true}\text{ and }-\frac{11}{5}=-\frac{17}{5}
Subtract 6 from -11 to get -17.
\text{true}\text{ and }\text{false}
Compare -\frac{11}{5} and -\frac{17}{5}.
\text{false}
The conjunction of \text{true} and \text{false} is \text{false}.