Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

-\frac{\left(3\sqrt{3}-4\right)\left(3\sqrt{3}-4\right)}{\left(3\sqrt{3}+4\right)\left(3\sqrt{3}-4\right)}
Rationalize the denominator of \frac{3\sqrt{3}-4}{3\sqrt{3}+4} by multiplying numerator and denominator by 3\sqrt{3}-4.
-\frac{\left(3\sqrt{3}-4\right)\left(3\sqrt{3}-4\right)}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Consider \left(3\sqrt{3}+4\right)\left(3\sqrt{3}-4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-\frac{\left(3\sqrt{3}-4\right)^{2}}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Multiply 3\sqrt{3}-4 and 3\sqrt{3}-4 to get \left(3\sqrt{3}-4\right)^{2}.
-\frac{9\left(\sqrt{3}\right)^{2}-24\sqrt{3}+16}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-4\right)^{2}.
-\frac{9\times 3-24\sqrt{3}+16}{\left(3\sqrt{3}\right)^{2}-4^{2}}
The square of \sqrt{3} is 3.
-\frac{27-24\sqrt{3}+16}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Multiply 9 and 3 to get 27.
-\frac{43-24\sqrt{3}}{\left(3\sqrt{3}\right)^{2}-4^{2}}
Add 27 and 16 to get 43.
-\frac{43-24\sqrt{3}}{3^{2}\left(\sqrt{3}\right)^{2}-4^{2}}
Expand \left(3\sqrt{3}\right)^{2}.
-\frac{43-24\sqrt{3}}{9\left(\sqrt{3}\right)^{2}-4^{2}}
Calculate 3 to the power of 2 and get 9.
-\frac{43-24\sqrt{3}}{9\times 3-4^{2}}
The square of \sqrt{3} is 3.
-\frac{43-24\sqrt{3}}{27-4^{2}}
Multiply 9 and 3 to get 27.
-\frac{43-24\sqrt{3}}{27-16}
Calculate 4 to the power of 2 and get 16.
-\frac{43-24\sqrt{3}}{11}
Subtract 16 from 27 to get 11.