Solve for a
a=5
a=10
Share
Copied to clipboard
-\left(a-17\right)\times 2a=\left(a+25\right)\times 4
Variable a cannot be equal to any of the values -25,17 since division by zero is not defined. Multiply both sides of the equation by \left(a-17\right)\left(a+25\right), the least common multiple of a+25,a-17.
-\left(2a-34\right)a=\left(a+25\right)\times 4
Use the distributive property to multiply a-17 by 2.
-\left(2a^{2}-34a\right)=\left(a+25\right)\times 4
Use the distributive property to multiply 2a-34 by a.
-2a^{2}+34a=\left(a+25\right)\times 4
To find the opposite of 2a^{2}-34a, find the opposite of each term.
-2a^{2}+34a=4a+100
Use the distributive property to multiply a+25 by 4.
-2a^{2}+34a-4a=100
Subtract 4a from both sides.
-2a^{2}+30a=100
Combine 34a and -4a to get 30a.
-2a^{2}+30a-100=0
Subtract 100 from both sides.
a=\frac{-30±\sqrt{30^{2}-4\left(-2\right)\left(-100\right)}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 30 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-30±\sqrt{900-4\left(-2\right)\left(-100\right)}}{2\left(-2\right)}
Square 30.
a=\frac{-30±\sqrt{900+8\left(-100\right)}}{2\left(-2\right)}
Multiply -4 times -2.
a=\frac{-30±\sqrt{900-800}}{2\left(-2\right)}
Multiply 8 times -100.
a=\frac{-30±\sqrt{100}}{2\left(-2\right)}
Add 900 to -800.
a=\frac{-30±10}{2\left(-2\right)}
Take the square root of 100.
a=\frac{-30±10}{-4}
Multiply 2 times -2.
a=-\frac{20}{-4}
Now solve the equation a=\frac{-30±10}{-4} when ± is plus. Add -30 to 10.
a=5
Divide -20 by -4.
a=-\frac{40}{-4}
Now solve the equation a=\frac{-30±10}{-4} when ± is minus. Subtract 10 from -30.
a=10
Divide -40 by -4.
a=5 a=10
The equation is now solved.
-\left(a-17\right)\times 2a=\left(a+25\right)\times 4
Variable a cannot be equal to any of the values -25,17 since division by zero is not defined. Multiply both sides of the equation by \left(a-17\right)\left(a+25\right), the least common multiple of a+25,a-17.
-\left(2a-34\right)a=\left(a+25\right)\times 4
Use the distributive property to multiply a-17 by 2.
-\left(2a^{2}-34a\right)=\left(a+25\right)\times 4
Use the distributive property to multiply 2a-34 by a.
-2a^{2}+34a=\left(a+25\right)\times 4
To find the opposite of 2a^{2}-34a, find the opposite of each term.
-2a^{2}+34a=4a+100
Use the distributive property to multiply a+25 by 4.
-2a^{2}+34a-4a=100
Subtract 4a from both sides.
-2a^{2}+30a=100
Combine 34a and -4a to get 30a.
\frac{-2a^{2}+30a}{-2}=\frac{100}{-2}
Divide both sides by -2.
a^{2}+\frac{30}{-2}a=\frac{100}{-2}
Dividing by -2 undoes the multiplication by -2.
a^{2}-15a=\frac{100}{-2}
Divide 30 by -2.
a^{2}-15a=-50
Divide 100 by -2.
a^{2}-15a+\left(-\frac{15}{2}\right)^{2}=-50+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-15a+\frac{225}{4}=-50+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}-15a+\frac{225}{4}=\frac{25}{4}
Add -50 to \frac{225}{4}.
\left(a-\frac{15}{2}\right)^{2}=\frac{25}{4}
Factor a^{2}-15a+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
a-\frac{15}{2}=\frac{5}{2} a-\frac{15}{2}=-\frac{5}{2}
Simplify.
a=10 a=5
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}