Solve for w
w = \frac{\sqrt{753} + 57}{32} \approx 2.638776421
w=\frac{57-\sqrt{753}}{32}\approx 0.923723579
Share
Copied to clipboard
-\left(4w-6\right)\times 2=\left(w-3\right)\times 7+2\left(w-3\right)\left(2w-3\right)\times 4
Variable w cannot be equal to any of the values \frac{3}{2},3 since division by zero is not defined. Multiply both sides of the equation by 2\left(w-3\right)\left(2w-3\right), the least common multiple of w-3,4w-6.
-\left(8w-12\right)=\left(w-3\right)\times 7+2\left(w-3\right)\left(2w-3\right)\times 4
Use the distributive property to multiply 4w-6 by 2.
-8w+12=\left(w-3\right)\times 7+2\left(w-3\right)\left(2w-3\right)\times 4
To find the opposite of 8w-12, find the opposite of each term.
-8w+12=7w-21+2\left(w-3\right)\left(2w-3\right)\times 4
Use the distributive property to multiply w-3 by 7.
-8w+12=7w-21+8\left(w-3\right)\left(2w-3\right)
Multiply 2 and 4 to get 8.
-8w+12=7w-21+\left(8w-24\right)\left(2w-3\right)
Use the distributive property to multiply 8 by w-3.
-8w+12=7w-21+16w^{2}-72w+72
Use the distributive property to multiply 8w-24 by 2w-3 and combine like terms.
-8w+12=-65w-21+16w^{2}+72
Combine 7w and -72w to get -65w.
-8w+12=-65w+51+16w^{2}
Add -21 and 72 to get 51.
-8w+12+65w=51+16w^{2}
Add 65w to both sides.
57w+12=51+16w^{2}
Combine -8w and 65w to get 57w.
57w+12-51=16w^{2}
Subtract 51 from both sides.
57w-39=16w^{2}
Subtract 51 from 12 to get -39.
57w-39-16w^{2}=0
Subtract 16w^{2} from both sides.
-16w^{2}+57w-39=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
w=\frac{-57±\sqrt{57^{2}-4\left(-16\right)\left(-39\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 57 for b, and -39 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-57±\sqrt{3249-4\left(-16\right)\left(-39\right)}}{2\left(-16\right)}
Square 57.
w=\frac{-57±\sqrt{3249+64\left(-39\right)}}{2\left(-16\right)}
Multiply -4 times -16.
w=\frac{-57±\sqrt{3249-2496}}{2\left(-16\right)}
Multiply 64 times -39.
w=\frac{-57±\sqrt{753}}{2\left(-16\right)}
Add 3249 to -2496.
w=\frac{-57±\sqrt{753}}{-32}
Multiply 2 times -16.
w=\frac{\sqrt{753}-57}{-32}
Now solve the equation w=\frac{-57±\sqrt{753}}{-32} when ± is plus. Add -57 to \sqrt{753}.
w=\frac{57-\sqrt{753}}{32}
Divide -57+\sqrt{753} by -32.
w=\frac{-\sqrt{753}-57}{-32}
Now solve the equation w=\frac{-57±\sqrt{753}}{-32} when ± is minus. Subtract \sqrt{753} from -57.
w=\frac{\sqrt{753}+57}{32}
Divide -57-\sqrt{753} by -32.
w=\frac{57-\sqrt{753}}{32} w=\frac{\sqrt{753}+57}{32}
The equation is now solved.
-\left(4w-6\right)\times 2=\left(w-3\right)\times 7+2\left(w-3\right)\left(2w-3\right)\times 4
Variable w cannot be equal to any of the values \frac{3}{2},3 since division by zero is not defined. Multiply both sides of the equation by 2\left(w-3\right)\left(2w-3\right), the least common multiple of w-3,4w-6.
-\left(8w-12\right)=\left(w-3\right)\times 7+2\left(w-3\right)\left(2w-3\right)\times 4
Use the distributive property to multiply 4w-6 by 2.
-8w+12=\left(w-3\right)\times 7+2\left(w-3\right)\left(2w-3\right)\times 4
To find the opposite of 8w-12, find the opposite of each term.
-8w+12=7w-21+2\left(w-3\right)\left(2w-3\right)\times 4
Use the distributive property to multiply w-3 by 7.
-8w+12=7w-21+8\left(w-3\right)\left(2w-3\right)
Multiply 2 and 4 to get 8.
-8w+12=7w-21+\left(8w-24\right)\left(2w-3\right)
Use the distributive property to multiply 8 by w-3.
-8w+12=7w-21+16w^{2}-72w+72
Use the distributive property to multiply 8w-24 by 2w-3 and combine like terms.
-8w+12=-65w-21+16w^{2}+72
Combine 7w and -72w to get -65w.
-8w+12=-65w+51+16w^{2}
Add -21 and 72 to get 51.
-8w+12+65w=51+16w^{2}
Add 65w to both sides.
57w+12=51+16w^{2}
Combine -8w and 65w to get 57w.
57w+12-16w^{2}=51
Subtract 16w^{2} from both sides.
57w-16w^{2}=51-12
Subtract 12 from both sides.
57w-16w^{2}=39
Subtract 12 from 51 to get 39.
-16w^{2}+57w=39
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16w^{2}+57w}{-16}=\frac{39}{-16}
Divide both sides by -16.
w^{2}+\frac{57}{-16}w=\frac{39}{-16}
Dividing by -16 undoes the multiplication by -16.
w^{2}-\frac{57}{16}w=\frac{39}{-16}
Divide 57 by -16.
w^{2}-\frac{57}{16}w=-\frac{39}{16}
Divide 39 by -16.
w^{2}-\frac{57}{16}w+\left(-\frac{57}{32}\right)^{2}=-\frac{39}{16}+\left(-\frac{57}{32}\right)^{2}
Divide -\frac{57}{16}, the coefficient of the x term, by 2 to get -\frac{57}{32}. Then add the square of -\frac{57}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}-\frac{57}{16}w+\frac{3249}{1024}=-\frac{39}{16}+\frac{3249}{1024}
Square -\frac{57}{32} by squaring both the numerator and the denominator of the fraction.
w^{2}-\frac{57}{16}w+\frac{3249}{1024}=\frac{753}{1024}
Add -\frac{39}{16} to \frac{3249}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(w-\frac{57}{32}\right)^{2}=\frac{753}{1024}
Factor w^{2}-\frac{57}{16}w+\frac{3249}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w-\frac{57}{32}\right)^{2}}=\sqrt{\frac{753}{1024}}
Take the square root of both sides of the equation.
w-\frac{57}{32}=\frac{\sqrt{753}}{32} w-\frac{57}{32}=-\frac{\sqrt{753}}{32}
Simplify.
w=\frac{\sqrt{753}+57}{32} w=\frac{57-\sqrt{753}}{32}
Add \frac{57}{32} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}