Evaluate
-\frac{w^{2}}{5}+\frac{3w}{7}-\frac{731}{35}
Factor
\frac{-7w^{2}+15w-731}{35}
Share
Copied to clipboard
\frac{8}{21}-\frac{3}{5}w^{2}+\frac{2}{5}w^{2}-\frac{3}{5}+\frac{3}{7}w-\frac{62}{3}
Add -\frac{2}{7} and \frac{2}{3} to get \frac{8}{21}.
\frac{8}{21}-\frac{1}{5}w^{2}-\frac{3}{5}+\frac{3}{7}w-\frac{62}{3}
Combine -\frac{3}{5}w^{2} and \frac{2}{5}w^{2} to get -\frac{1}{5}w^{2}.
-\frac{23}{105}-\frac{1}{5}w^{2}+\frac{3}{7}w-\frac{62}{3}
Subtract \frac{3}{5} from \frac{8}{21} to get -\frac{23}{105}.
-\frac{731}{35}-\frac{1}{5}w^{2}+\frac{3}{7}w
Subtract \frac{62}{3} from -\frac{23}{105} to get -\frac{731}{35}.
\frac{-2193-21w^{2}+45w}{105}
Factor out \frac{1}{105}.
-21w^{2}+45w-2193
Consider -30-63w^{2}+70+42w^{2}-63+45w-2170. Multiply and combine like terms.
3\left(-7w^{2}+15w-731\right)
Consider -21w^{2}+45w-2193. Factor out 3.
\frac{-7w^{2}+15w-731}{35}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}