Solve for x (complex solution)
x=\frac{\sqrt{\sqrt{15}-2}}{2}\approx 0.684284909
x=-\frac{\sqrt{\sqrt{15}-2}}{2}\approx -0.684284909
x=-\frac{i\sqrt{\sqrt{15}+2}}{2}\approx -0-1.211711945i
x=\frac{i\sqrt{\sqrt{15}+2}}{2}\approx 1.211711945i
Solve for x
x=-\frac{\sqrt{\sqrt{15}-2}}{2}\approx -0.684284909
x=\frac{\sqrt{\sqrt{15}-2}}{2}\approx 0.684284909
Graph
Share
Copied to clipboard
\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Multiply both sides by -\frac{5}{2}, the reciprocal of -\frac{2}{5}.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
Multiply -\frac{3}{8} and -\frac{5}{2} to get \frac{15}{16}.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+\frac{1}{2}\right)^{2}.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Subtract \frac{15}{16} from both sides.
x^{4}+x^{2}-\frac{11}{16}=0
Subtract \frac{15}{16} from \frac{1}{4} to get -\frac{11}{16}.
t^{2}+t-\frac{11}{16}=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -\frac{11}{16} for c in the quadratic formula.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Do the calculations.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
Solve the equation t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} when ± is plus and when ± is minus.
x=-\frac{\sqrt{\sqrt{15}-2}}{2} x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{i\sqrt{\sqrt{15}+2}}{2} x=\frac{i\sqrt{\sqrt{15}+2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Multiply both sides by -\frac{5}{2}, the reciprocal of -\frac{2}{5}.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
Multiply -\frac{3}{8} and -\frac{5}{2} to get \frac{15}{16}.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+\frac{1}{2}\right)^{2}.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Subtract \frac{15}{16} from both sides.
x^{4}+x^{2}-\frac{11}{16}=0
Subtract \frac{15}{16} from \frac{1}{4} to get -\frac{11}{16}.
t^{2}+t-\frac{11}{16}=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -\frac{11}{16} for c in the quadratic formula.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Do the calculations.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
Solve the equation t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{\sqrt{\sqrt{15}-2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}