Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Multiply both sides by -\frac{5}{2}, the reciprocal of -\frac{2}{5}.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
Multiply -\frac{3}{8} and -\frac{5}{2} to get \frac{15}{16}.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+\frac{1}{2}\right)^{2}.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Subtract \frac{15}{16} from both sides.
x^{4}+x^{2}-\frac{11}{16}=0
Subtract \frac{15}{16} from \frac{1}{4} to get -\frac{11}{16}.
t^{2}+t-\frac{11}{16}=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -\frac{11}{16} for c in the quadratic formula.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Do the calculations.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
Solve the equation t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} when ± is plus and when ± is minus.
x=-\frac{\sqrt{\sqrt{15}-2}}{2} x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{i\sqrt{\sqrt{15}+2}}{2} x=\frac{i\sqrt{\sqrt{15}+2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
\left(x^{2}+\frac{1}{2}\right)^{2}=-\frac{3}{8}\left(-\frac{5}{2}\right)
Multiply both sides by -\frac{5}{2}, the reciprocal of -\frac{2}{5}.
\left(x^{2}+\frac{1}{2}\right)^{2}=\frac{15}{16}
Multiply -\frac{3}{8} and -\frac{5}{2} to get \frac{15}{16}.
\left(x^{2}\right)^{2}+x^{2}+\frac{1}{4}=\frac{15}{16}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+\frac{1}{2}\right)^{2}.
x^{4}+x^{2}+\frac{1}{4}=\frac{15}{16}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+x^{2}+\frac{1}{4}-\frac{15}{16}=0
Subtract \frac{15}{16} from both sides.
x^{4}+x^{2}-\frac{11}{16}=0
Subtract \frac{15}{16} from \frac{1}{4} to get -\frac{11}{16}.
t^{2}+t-\frac{11}{16}=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\left(-\frac{11}{16}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and -\frac{11}{16} for c in the quadratic formula.
t=\frac{-1±\frac{1}{2}\sqrt{15}}{2}
Do the calculations.
t=\frac{\sqrt{15}}{4}-\frac{1}{2} t=-\frac{\sqrt{15}}{4}-\frac{1}{2}
Solve the equation t=\frac{-1±\frac{1}{2}\sqrt{15}}{2} when ± is plus and when ± is minus.
x=\frac{\sqrt{\sqrt{15}-2}}{2} x=-\frac{\sqrt{\sqrt{15}-2}}{2}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for positive t.