Solve for a
a=-\frac{1}{2}=-0.5
a=1
Share
Copied to clipboard
-\frac{2}{5}\left(16-40a+25a^{2}\right)+\frac{7}{5}\left(4-5a\right)+\frac{24}{5}=4a-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-5a\right)^{2}.
-\frac{32}{5}+16a-10a^{2}+\frac{7}{5}\left(4-5a\right)+\frac{24}{5}=4a-1
Use the distributive property to multiply -\frac{2}{5} by 16-40a+25a^{2}.
-\frac{32}{5}+16a-10a^{2}+\frac{28}{5}-7a+\frac{24}{5}=4a-1
Use the distributive property to multiply \frac{7}{5} by 4-5a.
-\frac{4}{5}+16a-10a^{2}-7a+\frac{24}{5}=4a-1
Add -\frac{32}{5} and \frac{28}{5} to get -\frac{4}{5}.
-\frac{4}{5}+9a-10a^{2}+\frac{24}{5}=4a-1
Combine 16a and -7a to get 9a.
4+9a-10a^{2}=4a-1
Add -\frac{4}{5} and \frac{24}{5} to get 4.
4+9a-10a^{2}-4a=-1
Subtract 4a from both sides.
4+5a-10a^{2}=-1
Combine 9a and -4a to get 5a.
4+5a-10a^{2}+1=0
Add 1 to both sides.
5+5a-10a^{2}=0
Add 4 and 1 to get 5.
1+a-2a^{2}=0
Divide both sides by 5.
-2a^{2}+a+1=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=1 ab=-2=-2
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -2a^{2}+aa+ba+1. To find a and b, set up a system to be solved.
a=2 b=-1
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. The only such pair is the system solution.
\left(-2a^{2}+2a\right)+\left(-a+1\right)
Rewrite -2a^{2}+a+1 as \left(-2a^{2}+2a\right)+\left(-a+1\right).
2a\left(-a+1\right)-a+1
Factor out 2a in -2a^{2}+2a.
\left(-a+1\right)\left(2a+1\right)
Factor out common term -a+1 by using distributive property.
a=1 a=-\frac{1}{2}
To find equation solutions, solve -a+1=0 and 2a+1=0.
-\frac{2}{5}\left(16-40a+25a^{2}\right)+\frac{7}{5}\left(4-5a\right)+\frac{24}{5}=4a-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-5a\right)^{2}.
-\frac{32}{5}+16a-10a^{2}+\frac{7}{5}\left(4-5a\right)+\frac{24}{5}=4a-1
Use the distributive property to multiply -\frac{2}{5} by 16-40a+25a^{2}.
-\frac{32}{5}+16a-10a^{2}+\frac{28}{5}-7a+\frac{24}{5}=4a-1
Use the distributive property to multiply \frac{7}{5} by 4-5a.
-\frac{4}{5}+16a-10a^{2}-7a+\frac{24}{5}=4a-1
Add -\frac{32}{5} and \frac{28}{5} to get -\frac{4}{5}.
-\frac{4}{5}+9a-10a^{2}+\frac{24}{5}=4a-1
Combine 16a and -7a to get 9a.
4+9a-10a^{2}=4a-1
Add -\frac{4}{5} and \frac{24}{5} to get 4.
4+9a-10a^{2}-4a=-1
Subtract 4a from both sides.
4+5a-10a^{2}=-1
Combine 9a and -4a to get 5a.
4+5a-10a^{2}+1=0
Add 1 to both sides.
5+5a-10a^{2}=0
Add 4 and 1 to get 5.
-10a^{2}+5a+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-5±\sqrt{5^{2}-4\left(-10\right)\times 5}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 5 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-5±\sqrt{25-4\left(-10\right)\times 5}}{2\left(-10\right)}
Square 5.
a=\frac{-5±\sqrt{25+40\times 5}}{2\left(-10\right)}
Multiply -4 times -10.
a=\frac{-5±\sqrt{25+200}}{2\left(-10\right)}
Multiply 40 times 5.
a=\frac{-5±\sqrt{225}}{2\left(-10\right)}
Add 25 to 200.
a=\frac{-5±15}{2\left(-10\right)}
Take the square root of 225.
a=\frac{-5±15}{-20}
Multiply 2 times -10.
a=\frac{10}{-20}
Now solve the equation a=\frac{-5±15}{-20} when ± is plus. Add -5 to 15.
a=-\frac{1}{2}
Reduce the fraction \frac{10}{-20} to lowest terms by extracting and canceling out 10.
a=-\frac{20}{-20}
Now solve the equation a=\frac{-5±15}{-20} when ± is minus. Subtract 15 from -5.
a=1
Divide -20 by -20.
a=-\frac{1}{2} a=1
The equation is now solved.
-\frac{2}{5}\left(16-40a+25a^{2}\right)+\frac{7}{5}\left(4-5a\right)+\frac{24}{5}=4a-1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-5a\right)^{2}.
-\frac{32}{5}+16a-10a^{2}+\frac{7}{5}\left(4-5a\right)+\frac{24}{5}=4a-1
Use the distributive property to multiply -\frac{2}{5} by 16-40a+25a^{2}.
-\frac{32}{5}+16a-10a^{2}+\frac{28}{5}-7a+\frac{24}{5}=4a-1
Use the distributive property to multiply \frac{7}{5} by 4-5a.
-\frac{4}{5}+16a-10a^{2}-7a+\frac{24}{5}=4a-1
Add -\frac{32}{5} and \frac{28}{5} to get -\frac{4}{5}.
-\frac{4}{5}+9a-10a^{2}+\frac{24}{5}=4a-1
Combine 16a and -7a to get 9a.
4+9a-10a^{2}=4a-1
Add -\frac{4}{5} and \frac{24}{5} to get 4.
4+9a-10a^{2}-4a=-1
Subtract 4a from both sides.
4+5a-10a^{2}=-1
Combine 9a and -4a to get 5a.
5a-10a^{2}=-1-4
Subtract 4 from both sides.
5a-10a^{2}=-5
Subtract 4 from -1 to get -5.
-10a^{2}+5a=-5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-10a^{2}+5a}{-10}=-\frac{5}{-10}
Divide both sides by -10.
a^{2}+\frac{5}{-10}a=-\frac{5}{-10}
Dividing by -10 undoes the multiplication by -10.
a^{2}-\frac{1}{2}a=-\frac{5}{-10}
Reduce the fraction \frac{5}{-10} to lowest terms by extracting and canceling out 5.
a^{2}-\frac{1}{2}a=\frac{1}{2}
Reduce the fraction \frac{-5}{-10} to lowest terms by extracting and canceling out 5.
a^{2}-\frac{1}{2}a+\left(-\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{1}{2}a+\frac{1}{16}=\frac{9}{16}
Add \frac{1}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{1}{4}\right)^{2}=\frac{9}{16}
Factor a^{2}-\frac{1}{2}a+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
a-\frac{1}{4}=\frac{3}{4} a-\frac{1}{4}=-\frac{3}{4}
Simplify.
a=1 a=-\frac{1}{2}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}