Solve for c
c\leq -\frac{1}{20}
Share
Copied to clipboard
4c\leq -\frac{3}{5}+\frac{2}{5}
Add \frac{2}{5} to both sides.
4c\leq \frac{-3+2}{5}
Since -\frac{3}{5} and \frac{2}{5} have the same denominator, add them by adding their numerators.
4c\leq -\frac{1}{5}
Add -3 and 2 to get -1.
c\leq \frac{-\frac{1}{5}}{4}
Divide both sides by 4. Since 4 is positive, the inequality direction remains the same.
c\leq \frac{-1}{5\times 4}
Express \frac{-\frac{1}{5}}{4} as a single fraction.
c\leq \frac{-1}{20}
Multiply 5 and 4 to get 20.
c\leq -\frac{1}{20}
Fraction \frac{-1}{20} can be rewritten as -\frac{1}{20} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}