Solve for t
t=3
t = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
-\frac{2}{3}t^{2}+3t=3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{2}{3}t^{2}+3t-3=3-3
Subtract 3 from both sides of the equation.
-\frac{2}{3}t^{2}+3t-3=0
Subtracting 3 from itself leaves 0.
t=\frac{-3±\sqrt{3^{2}-4\left(-\frac{2}{3}\right)\left(-3\right)}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, 3 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-3±\sqrt{9-4\left(-\frac{2}{3}\right)\left(-3\right)}}{2\left(-\frac{2}{3}\right)}
Square 3.
t=\frac{-3±\sqrt{9+\frac{8}{3}\left(-3\right)}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
t=\frac{-3±\sqrt{9-8}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times -3.
t=\frac{-3±\sqrt{1}}{2\left(-\frac{2}{3}\right)}
Add 9 to -8.
t=\frac{-3±1}{2\left(-\frac{2}{3}\right)}
Take the square root of 1.
t=\frac{-3±1}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
t=-\frac{2}{-\frac{4}{3}}
Now solve the equation t=\frac{-3±1}{-\frac{4}{3}} when ± is plus. Add -3 to 1.
t=\frac{3}{2}
Divide -2 by -\frac{4}{3} by multiplying -2 by the reciprocal of -\frac{4}{3}.
t=-\frac{4}{-\frac{4}{3}}
Now solve the equation t=\frac{-3±1}{-\frac{4}{3}} when ± is minus. Subtract 1 from -3.
t=3
Divide -4 by -\frac{4}{3} by multiplying -4 by the reciprocal of -\frac{4}{3}.
t=\frac{3}{2} t=3
The equation is now solved.
-\frac{2}{3}t^{2}+3t=3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{2}{3}t^{2}+3t}{-\frac{2}{3}}=\frac{3}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{3}{-\frac{2}{3}}t=\frac{3}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
t^{2}-\frac{9}{2}t=\frac{3}{-\frac{2}{3}}
Divide 3 by -\frac{2}{3} by multiplying 3 by the reciprocal of -\frac{2}{3}.
t^{2}-\frac{9}{2}t=-\frac{9}{2}
Divide 3 by -\frac{2}{3} by multiplying 3 by the reciprocal of -\frac{2}{3}.
t^{2}-\frac{9}{2}t+\left(-\frac{9}{4}\right)^{2}=-\frac{9}{2}+\left(-\frac{9}{4}\right)^{2}
Divide -\frac{9}{2}, the coefficient of the x term, by 2 to get -\frac{9}{4}. Then add the square of -\frac{9}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{9}{2}t+\frac{81}{16}=-\frac{9}{2}+\frac{81}{16}
Square -\frac{9}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{9}{2}t+\frac{81}{16}=\frac{9}{16}
Add -\frac{9}{2} to \frac{81}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{9}{4}\right)^{2}=\frac{9}{16}
Factor t^{2}-\frac{9}{2}t+\frac{81}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{9}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Take the square root of both sides of the equation.
t-\frac{9}{4}=\frac{3}{4} t-\frac{9}{4}=-\frac{3}{4}
Simplify.
t=3 t=\frac{3}{2}
Add \frac{9}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}