Evaluate
\frac{a-a^{2}-2x+2ax-2x^{2}}{1-a}
Differentiate w.r.t. x
\frac{2\left(-2x+a-1\right)}{1-a}
Share
Copied to clipboard
\frac{-2x^{2}}{1-a}-2x+a
Express \left(-\frac{2}{1-a}\right)x^{2} as a single fraction.
\frac{-2x^{2}}{1-a}+\frac{\left(-2x+a\right)\left(1-a\right)}{1-a}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x+a times \frac{1-a}{1-a}.
\frac{-2x^{2}+\left(-2x+a\right)\left(1-a\right)}{1-a}
Since \frac{-2x^{2}}{1-a} and \frac{\left(-2x+a\right)\left(1-a\right)}{1-a} have the same denominator, add them by adding their numerators.
\frac{-2x^{2}-2x+2xa+a-a^{2}}{1-a}
Do the multiplications in -2x^{2}+\left(-2x+a\right)\left(1-a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}