Solve for t
t=\frac{15+i\times 3\sqrt{15}}{16}\approx 0.9375+0.726184377i
t=\frac{-i\times 3\sqrt{15}+15}{16}\approx 0.9375-0.726184377i
Share
Copied to clipboard
-\frac{16}{5}t^{2}+6t=4.5
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-\frac{16}{5}t^{2}+6t-4.5=4.5-4.5
Subtract 4.5 from both sides of the equation.
-\frac{16}{5}t^{2}+6t-4.5=0
Subtracting 4.5 from itself leaves 0.
t=\frac{-6±\sqrt{6^{2}-4\left(-\frac{16}{5}\right)\left(-4.5\right)}}{2\left(-\frac{16}{5}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{16}{5} for a, 6 for b, and -4.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-6±\sqrt{36-4\left(-\frac{16}{5}\right)\left(-4.5\right)}}{2\left(-\frac{16}{5}\right)}
Square 6.
t=\frac{-6±\sqrt{36+\frac{64}{5}\left(-4.5\right)}}{2\left(-\frac{16}{5}\right)}
Multiply -4 times -\frac{16}{5}.
t=\frac{-6±\sqrt{36-\frac{288}{5}}}{2\left(-\frac{16}{5}\right)}
Multiply \frac{64}{5} times -4.5 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-6±\sqrt{-\frac{108}{5}}}{2\left(-\frac{16}{5}\right)}
Add 36 to -\frac{288}{5}.
t=\frac{-6±\frac{6\sqrt{15}i}{5}}{2\left(-\frac{16}{5}\right)}
Take the square root of -\frac{108}{5}.
t=\frac{-6±\frac{6\sqrt{15}i}{5}}{-\frac{32}{5}}
Multiply 2 times -\frac{16}{5}.
t=\frac{\frac{6\sqrt{15}i}{5}-6}{-\frac{32}{5}}
Now solve the equation t=\frac{-6±\frac{6\sqrt{15}i}{5}}{-\frac{32}{5}} when ± is plus. Add -6 to \frac{6i\sqrt{15}}{5}.
t=\frac{-3\sqrt{15}i+15}{16}
Divide -6+\frac{6i\sqrt{15}}{5} by -\frac{32}{5} by multiplying -6+\frac{6i\sqrt{15}}{5} by the reciprocal of -\frac{32}{5}.
t=\frac{-\frac{6\sqrt{15}i}{5}-6}{-\frac{32}{5}}
Now solve the equation t=\frac{-6±\frac{6\sqrt{15}i}{5}}{-\frac{32}{5}} when ± is minus. Subtract \frac{6i\sqrt{15}}{5} from -6.
t=\frac{15+3\sqrt{15}i}{16}
Divide -6-\frac{6i\sqrt{15}}{5} by -\frac{32}{5} by multiplying -6-\frac{6i\sqrt{15}}{5} by the reciprocal of -\frac{32}{5}.
t=\frac{-3\sqrt{15}i+15}{16} t=\frac{15+3\sqrt{15}i}{16}
The equation is now solved.
-\frac{16}{5}t^{2}+6t=4.5
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{16}{5}t^{2}+6t}{-\frac{16}{5}}=\frac{4.5}{-\frac{16}{5}}
Divide both sides of the equation by -\frac{16}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{6}{-\frac{16}{5}}t=\frac{4.5}{-\frac{16}{5}}
Dividing by -\frac{16}{5} undoes the multiplication by -\frac{16}{5}.
t^{2}-\frac{15}{8}t=\frac{4.5}{-\frac{16}{5}}
Divide 6 by -\frac{16}{5} by multiplying 6 by the reciprocal of -\frac{16}{5}.
t^{2}-\frac{15}{8}t=-\frac{45}{32}
Divide 4.5 by -\frac{16}{5} by multiplying 4.5 by the reciprocal of -\frac{16}{5}.
t^{2}-\frac{15}{8}t+\left(-\frac{15}{16}\right)^{2}=-\frac{45}{32}+\left(-\frac{15}{16}\right)^{2}
Divide -\frac{15}{8}, the coefficient of the x term, by 2 to get -\frac{15}{16}. Then add the square of -\frac{15}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{15}{8}t+\frac{225}{256}=-\frac{45}{32}+\frac{225}{256}
Square -\frac{15}{16} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{15}{8}t+\frac{225}{256}=-\frac{135}{256}
Add -\frac{45}{32} to \frac{225}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{15}{16}\right)^{2}=-\frac{135}{256}
Factor t^{2}-\frac{15}{8}t+\frac{225}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{15}{16}\right)^{2}}=\sqrt{-\frac{135}{256}}
Take the square root of both sides of the equation.
t-\frac{15}{16}=\frac{3\sqrt{15}i}{16} t-\frac{15}{16}=-\frac{3\sqrt{15}i}{16}
Simplify.
t=\frac{15+3\sqrt{15}i}{16} t=\frac{-3\sqrt{15}i+15}{16}
Add \frac{15}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}