Solve for m
m=1
m=0
Share
Copied to clipboard
-15m^{2}-30m^{2}+45=9m^{2}-54m+45
Multiply both sides of the equation by 16, the least common multiple of 16,8.
-45m^{2}+45=9m^{2}-54m+45
Combine -15m^{2} and -30m^{2} to get -45m^{2}.
-45m^{2}+45-9m^{2}=-54m+45
Subtract 9m^{2} from both sides.
-54m^{2}+45=-54m+45
Combine -45m^{2} and -9m^{2} to get -54m^{2}.
-54m^{2}+45+54m=45
Add 54m to both sides.
-54m^{2}+45+54m-45=0
Subtract 45 from both sides.
-54m^{2}+54m=0
Subtract 45 from 45 to get 0.
m\left(-54m+54\right)=0
Factor out m.
m=0 m=1
To find equation solutions, solve m=0 and -54m+54=0.
-15m^{2}-30m^{2}+45=9m^{2}-54m+45
Multiply both sides of the equation by 16, the least common multiple of 16,8.
-45m^{2}+45=9m^{2}-54m+45
Combine -15m^{2} and -30m^{2} to get -45m^{2}.
-45m^{2}+45-9m^{2}=-54m+45
Subtract 9m^{2} from both sides.
-54m^{2}+45=-54m+45
Combine -45m^{2} and -9m^{2} to get -54m^{2}.
-54m^{2}+45+54m=45
Add 54m to both sides.
-54m^{2}+45+54m-45=0
Subtract 45 from both sides.
-54m^{2}+54m=0
Subtract 45 from 45 to get 0.
m=\frac{-54±\sqrt{54^{2}}}{2\left(-54\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -54 for a, 54 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-54±54}{2\left(-54\right)}
Take the square root of 54^{2}.
m=\frac{-54±54}{-108}
Multiply 2 times -54.
m=\frac{0}{-108}
Now solve the equation m=\frac{-54±54}{-108} when ± is plus. Add -54 to 54.
m=0
Divide 0 by -108.
m=-\frac{108}{-108}
Now solve the equation m=\frac{-54±54}{-108} when ± is minus. Subtract 54 from -54.
m=1
Divide -108 by -108.
m=0 m=1
The equation is now solved.
-15m^{2}-30m^{2}+45=9m^{2}-54m+45
Multiply both sides of the equation by 16, the least common multiple of 16,8.
-45m^{2}+45=9m^{2}-54m+45
Combine -15m^{2} and -30m^{2} to get -45m^{2}.
-45m^{2}+45-9m^{2}=-54m+45
Subtract 9m^{2} from both sides.
-54m^{2}+45=-54m+45
Combine -45m^{2} and -9m^{2} to get -54m^{2}.
-54m^{2}+45+54m=45
Add 54m to both sides.
-54m^{2}+54m=45-45
Subtract 45 from both sides.
-54m^{2}+54m=0
Subtract 45 from 45 to get 0.
\frac{-54m^{2}+54m}{-54}=\frac{0}{-54}
Divide both sides by -54.
m^{2}+\frac{54}{-54}m=\frac{0}{-54}
Dividing by -54 undoes the multiplication by -54.
m^{2}-m=\frac{0}{-54}
Divide 54 by -54.
m^{2}-m=0
Divide 0 by -54.
m^{2}-m+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-m+\frac{1}{4}=\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
\left(m-\frac{1}{2}\right)^{2}=\frac{1}{4}
Factor m^{2}-m+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Take the square root of both sides of the equation.
m-\frac{1}{2}=\frac{1}{2} m-\frac{1}{2}=-\frac{1}{2}
Simplify.
m=1 m=0
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}