Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

t^{2}+\frac{6}{5}t-\frac{144}{25}=0
Substitute t for y^{2}.
t=\frac{-\frac{6}{5}±\sqrt{\left(\frac{6}{5}\right)^{2}-4\times 1\left(-\frac{144}{25}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, \frac{6}{5} for b, and -\frac{144}{25} for c in the quadratic formula.
t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2}
Do the calculations.
t=\frac{3\sqrt{17}-3}{5} t=\frac{-3\sqrt{17}-3}{5}
Solve the equation t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2} when ± is plus and when ± is minus.
y=-\sqrt{\frac{3\sqrt{17}-3}{5}} y=\sqrt{\frac{3\sqrt{17}-3}{5}} y=-i\sqrt{\frac{3\sqrt{17}+3}{5}} y=i\sqrt{\frac{3\sqrt{17}+3}{5}}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
t^{2}+\frac{6}{5}t-\frac{144}{25}=0
Substitute t for y^{2}.
t=\frac{-\frac{6}{5}±\sqrt{\left(\frac{6}{5}\right)^{2}-4\times 1\left(-\frac{144}{25}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, \frac{6}{5} for b, and -\frac{144}{25} for c in the quadratic formula.
t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2}
Do the calculations.
t=\frac{3\sqrt{17}-3}{5} t=\frac{-3\sqrt{17}-3}{5}
Solve the equation t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2} when ± is plus and when ± is minus.
y=\sqrt{\frac{3\sqrt{17}-3}{5}} y=-\sqrt{\frac{3\sqrt{17}-3}{5}}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.