Solve for y (complex solution)
y=\frac{i\sqrt{15\left(\sqrt{17}+1\right)}}{5}\approx 1.753243673i
y=-\frac{i\sqrt{15\left(\sqrt{17}+1\right)}}{5}\approx -0-1.753243673i
y = -\frac{\sqrt{15 {(\sqrt{17} - 1)}}}{5} \approx -1.368891294
y = \frac{\sqrt{15 {(\sqrt{17} - 1)}}}{5} \approx 1.368891294
Solve for y
y = -\frac{\sqrt{15 {(\sqrt{17} - 1)}}}{5} \approx -1.368891294
y = \frac{\sqrt{15 {(\sqrt{17} - 1)}}}{5} \approx 1.368891294
Graph
Share
Copied to clipboard
t^{2}+\frac{6}{5}t-\frac{144}{25}=0
Substitute t for y^{2}.
t=\frac{-\frac{6}{5}±\sqrt{\left(\frac{6}{5}\right)^{2}-4\times 1\left(-\frac{144}{25}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, \frac{6}{5} for b, and -\frac{144}{25} for c in the quadratic formula.
t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2}
Do the calculations.
t=\frac{3\sqrt{17}-3}{5} t=\frac{-3\sqrt{17}-3}{5}
Solve the equation t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2} when ± is plus and when ± is minus.
y=-\sqrt{\frac{3\sqrt{17}-3}{5}} y=\sqrt{\frac{3\sqrt{17}-3}{5}} y=-i\sqrt{\frac{3\sqrt{17}+3}{5}} y=i\sqrt{\frac{3\sqrt{17}+3}{5}}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for each t.
t^{2}+\frac{6}{5}t-\frac{144}{25}=0
Substitute t for y^{2}.
t=\frac{-\frac{6}{5}±\sqrt{\left(\frac{6}{5}\right)^{2}-4\times 1\left(-\frac{144}{25}\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, \frac{6}{5} for b, and -\frac{144}{25} for c in the quadratic formula.
t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2}
Do the calculations.
t=\frac{3\sqrt{17}-3}{5} t=\frac{-3\sqrt{17}-3}{5}
Solve the equation t=\frac{-\frac{6}{5}±\frac{6}{5}\sqrt{17}}{2} when ± is plus and when ± is minus.
y=\sqrt{\frac{3\sqrt{17}-3}{5}} y=-\sqrt{\frac{3\sqrt{17}-3}{5}}
Since y=t^{2}, the solutions are obtained by evaluating y=±\sqrt{t} for positive t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}