Evaluate
-\frac{3}{8}=-0.375
Factor
-\frac{3}{8} = -0.375
Share
Copied to clipboard
-\frac{13}{24}-\frac{-\frac{1}{8}}{\frac{3}{4}}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
-\frac{13}{24}-\left(-\frac{1}{8}\times \frac{4}{3}\right)
Divide -\frac{1}{8} by \frac{3}{4} by multiplying -\frac{1}{8} by the reciprocal of \frac{3}{4}.
-\frac{13}{24}-\frac{-4}{8\times 3}
Multiply -\frac{1}{8} times \frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{13}{24}-\frac{-4}{24}
Do the multiplications in the fraction \frac{-4}{8\times 3}.
-\frac{13}{24}-\left(-\frac{1}{6}\right)
Reduce the fraction \frac{-4}{24} to lowest terms by extracting and canceling out 4.
-\frac{13}{24}+\frac{1}{6}
The opposite of -\frac{1}{6} is \frac{1}{6}.
-\frac{13}{24}+\frac{4}{24}
Least common multiple of 24 and 6 is 24. Convert -\frac{13}{24} and \frac{1}{6} to fractions with denominator 24.
\frac{-13+4}{24}
Since -\frac{13}{24} and \frac{4}{24} have the same denominator, add them by adding their numerators.
\frac{-9}{24}
Add -13 and 4 to get -9.
-\frac{3}{8}
Reduce the fraction \frac{-9}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}