Evaluate
-\frac{6929}{800}=-8.66125
Factor
-\frac{6929}{800} = -8\frac{529}{800} = -8.66125
Share
Copied to clipboard
\frac{-\frac{13}{100}\times \frac{24+17}{24}}{-\frac{13}{36}}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Multiply 1 and 24 to get 24.
\frac{-\frac{13}{100}\times \frac{41}{24}}{-\frac{13}{36}}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Add 24 and 17 to get 41.
\frac{\frac{-13\times 41}{100\times 24}}{-\frac{13}{36}}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Multiply -\frac{13}{100} times \frac{41}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-533}{2400}}{-\frac{13}{36}}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Do the multiplications in the fraction \frac{-13\times 41}{100\times 24}.
\frac{-\frac{533}{2400}}{-\frac{13}{36}}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Fraction \frac{-533}{2400} can be rewritten as -\frac{533}{2400} by extracting the negative sign.
-\frac{533}{2400}\left(-\frac{36}{13}\right)\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Divide -\frac{533}{2400} by -\frac{13}{36} by multiplying -\frac{533}{2400} by the reciprocal of -\frac{13}{36}.
\frac{-533\left(-36\right)}{2400\times 13}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Multiply -\frac{533}{2400} times -\frac{36}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{19188}{31200}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Do the multiplications in the fraction \frac{-533\left(-36\right)}{2400\times 13}.
\frac{123}{200}\times \frac{3\times 12+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Reduce the fraction \frac{19188}{31200} to lowest terms by extracting and canceling out 156.
\frac{123}{200}\times \frac{36+5}{12}\left(-\frac{4\times 41+5}{41}\right)
Multiply 3 and 12 to get 36.
\frac{123}{200}\times \frac{41}{12}\left(-\frac{4\times 41+5}{41}\right)
Add 36 and 5 to get 41.
\frac{123\times 41}{200\times 12}\left(-\frac{4\times 41+5}{41}\right)
Multiply \frac{123}{200} times \frac{41}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{5043}{2400}\left(-\frac{4\times 41+5}{41}\right)
Do the multiplications in the fraction \frac{123\times 41}{200\times 12}.
\frac{1681}{800}\left(-\frac{4\times 41+5}{41}\right)
Reduce the fraction \frac{5043}{2400} to lowest terms by extracting and canceling out 3.
\frac{1681}{800}\left(-\frac{164+5}{41}\right)
Multiply 4 and 41 to get 164.
\frac{1681}{800}\left(-\frac{169}{41}\right)
Add 164 and 5 to get 169.
\frac{1681\left(-169\right)}{800\times 41}
Multiply \frac{1681}{800} times -\frac{169}{41} by multiplying numerator times numerator and denominator times denominator.
\frac{-284089}{32800}
Do the multiplications in the fraction \frac{1681\left(-169\right)}{800\times 41}.
-\frac{6929}{800}
Reduce the fraction \frac{-284089}{32800} to lowest terms by extracting and canceling out 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}