Solve for b
b=\frac{143}{204}\approx 0.700980392
Share
Copied to clipboard
-\frac{3}{4}=-\frac{10}{6}+\frac{17}{13}b
Reduce the fraction \frac{12}{16} to lowest terms by extracting and canceling out 4.
-\frac{3}{4}=-\frac{5}{3}+\frac{17}{13}b
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
-\frac{5}{3}+\frac{17}{13}b=-\frac{3}{4}
Swap sides so that all variable terms are on the left hand side.
\frac{17}{13}b=-\frac{3}{4}+\frac{5}{3}
Add \frac{5}{3} to both sides.
\frac{17}{13}b=-\frac{9}{12}+\frac{20}{12}
Least common multiple of 4 and 3 is 12. Convert -\frac{3}{4} and \frac{5}{3} to fractions with denominator 12.
\frac{17}{13}b=\frac{-9+20}{12}
Since -\frac{9}{12} and \frac{20}{12} have the same denominator, add them by adding their numerators.
\frac{17}{13}b=\frac{11}{12}
Add -9 and 20 to get 11.
b=\frac{11}{12}\times \frac{13}{17}
Multiply both sides by \frac{13}{17}, the reciprocal of \frac{17}{13}.
b=\frac{11\times 13}{12\times 17}
Multiply \frac{11}{12} times \frac{13}{17} by multiplying numerator times numerator and denominator times denominator.
b=\frac{143}{204}
Do the multiplications in the fraction \frac{11\times 13}{12\times 17}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}