Solve for x
x=\frac{82-10y}{11}
y\neq 6
Solve for y
y=-\frac{11x}{10}+\frac{41}{5}
x\neq 2
Graph
Share
Copied to clipboard
-11\left(x-2\right)=-10\left(6-y\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by 10\left(x-2\right), the least common multiple of 10,2-x.
-11x+22=-10\left(6-y\right)
Use the distributive property to multiply -11 by x-2.
-11x+22=-60+10y
Use the distributive property to multiply -10 by 6-y.
-11x=-60+10y-22
Subtract 22 from both sides.
-11x=-82+10y
Subtract 22 from -60 to get -82.
-11x=10y-82
The equation is in standard form.
\frac{-11x}{-11}=\frac{10y-82}{-11}
Divide both sides by -11.
x=\frac{10y-82}{-11}
Dividing by -11 undoes the multiplication by -11.
x=\frac{82-10y}{11}
Divide -82+10y by -11.
x=\frac{82-10y}{11}\text{, }x\neq 2
Variable x cannot be equal to 2.
-11\left(x-2\right)=-10\left(6-y\right)
Multiply both sides of the equation by 10\left(x-2\right), the least common multiple of 10,2-x.
-11x+22=-10\left(6-y\right)
Use the distributive property to multiply -11 by x-2.
-11x+22=-60+10y
Use the distributive property to multiply -10 by 6-y.
-60+10y=-11x+22
Swap sides so that all variable terms are on the left hand side.
10y=-11x+22+60
Add 60 to both sides.
10y=-11x+82
Add 22 and 60 to get 82.
10y=82-11x
The equation is in standard form.
\frac{10y}{10}=\frac{82-11x}{10}
Divide both sides by 10.
y=\frac{82-11x}{10}
Dividing by 10 undoes the multiplication by 10.
y=-\frac{11x}{10}+\frac{41}{5}
Divide -11x+82 by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}