Verify
false
Share
Copied to clipboard
\frac{-\frac{1}{4}}{\frac{7}{4}}=-10
Reduce the fraction \frac{10}{40} to lowest terms by extracting and canceling out 10.
-\frac{1}{4}\times \frac{4}{7}=-10
Divide -\frac{1}{4} by \frac{7}{4} by multiplying -\frac{1}{4} by the reciprocal of \frac{7}{4}.
\frac{-4}{4\times 7}=-10
Multiply -\frac{1}{4} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{7}=-10
Cancel out 4 in both numerator and denominator.
-\frac{1}{7}=-10
Fraction \frac{-1}{7} can be rewritten as -\frac{1}{7} by extracting the negative sign.
-\frac{1}{7}=-\frac{70}{7}
Convert -10 to fraction -\frac{70}{7}.
\text{false}
Compare -\frac{1}{7} and -\frac{70}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}