Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
-\frac{1-\frac{2}{6}}{4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{9}{2}}-\frac{3}{4}
Multiply 2 and \frac{1}{6} to get \frac{2}{6}.
-\frac{1-\frac{1}{3}}{4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{9}{2}}-\frac{3}{4}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
-\frac{\frac{3}{3}-\frac{1}{3}}{4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{9}{2}}-\frac{3}{4}
Convert 1 to fraction \frac{3}{3}.
-\frac{\frac{3-1}{3}}{4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{9}{2}}-\frac{3}{4}
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{\frac{2}{3}}{4+\frac{\frac{1}{4}}{\frac{3}{2}}-\frac{9}{2}}-\frac{3}{4}
Subtract 1 from 3 to get 2.
-\frac{\frac{2}{3}}{4+\frac{1}{4}\times \frac{2}{3}-\frac{9}{2}}-\frac{3}{4}
Divide \frac{1}{4} by \frac{3}{2} by multiplying \frac{1}{4} by the reciprocal of \frac{3}{2}.
-\frac{\frac{2}{3}}{4+\frac{1\times 2}{4\times 3}-\frac{9}{2}}-\frac{3}{4}
Multiply \frac{1}{4} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{\frac{2}{3}}{4+\frac{2}{12}-\frac{9}{2}}-\frac{3}{4}
Do the multiplications in the fraction \frac{1\times 2}{4\times 3}.
-\frac{\frac{2}{3}}{4+\frac{1}{6}-\frac{9}{2}}-\frac{3}{4}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
-\frac{\frac{2}{3}}{\frac{24}{6}+\frac{1}{6}-\frac{9}{2}}-\frac{3}{4}
Convert 4 to fraction \frac{24}{6}.
-\frac{\frac{2}{3}}{\frac{24+1}{6}-\frac{9}{2}}-\frac{3}{4}
Since \frac{24}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
-\frac{\frac{2}{3}}{\frac{25}{6}-\frac{9}{2}}-\frac{3}{4}
Add 24 and 1 to get 25.
-\frac{\frac{2}{3}}{\frac{25}{6}-\frac{27}{6}}-\frac{3}{4}
Least common multiple of 6 and 2 is 6. Convert \frac{25}{6} and \frac{9}{2} to fractions with denominator 6.
-\frac{\frac{2}{3}}{\frac{25-27}{6}}-\frac{3}{4}
Since \frac{25}{6} and \frac{27}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{\frac{2}{3}}{\frac{-2}{6}}-\frac{3}{4}
Subtract 27 from 25 to get -2.
-\frac{\frac{2}{3}}{-\frac{1}{3}}-\frac{3}{4}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
-\frac{2}{3}\left(-3\right)-\frac{3}{4}
Divide \frac{2}{3} by -\frac{1}{3} by multiplying \frac{2}{3} by the reciprocal of -\frac{1}{3}.
-\frac{2\left(-3\right)}{3}-\frac{3}{4}
Express \frac{2}{3}\left(-3\right) as a single fraction.
-\frac{-6}{3}-\frac{3}{4}
Multiply 2 and -3 to get -6.
-\left(-2\right)-\frac{3}{4}
Divide -6 by 3 to get -2.
2-\frac{3}{4}
The opposite of -2 is 2.
\frac{8}{4}-\frac{3}{4}
Convert 2 to fraction \frac{8}{4}.
\frac{8-3}{4}
Since \frac{8}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}
Subtract 3 from 8 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}