Evaluate
-\frac{2\left(x-1\right)\left(-x^{2}+2x-2\right)}{\left(x\left(2-x\right)\right)^{2}}
Expand
\frac{2\left(x^{3}-3x^{2}+4x-2\right)}{\left(x\left(x-2\right)\right)^{2}}
Graph
Share
Copied to clipboard
-\frac{1}{x^{2}}+\frac{x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{1}{x} times \frac{x}{x}.
\frac{-1+x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
Since -\frac{1}{x^{2}} and \frac{x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}}+\frac{x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-2\right)^{2} is x^{2}\left(x-2\right)^{2}. Multiply \frac{-1+x}{x^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(-1+x\right)\left(x-2\right)^{2}+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Since \frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}} and \frac{x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Do the multiplications in \left(-1+x\right)\left(x-2\right)^{2}+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Combine like terms in -x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}\left(x-2\right)^{2} and 2-x is x^{2}\left(x-2\right)^{2}. Multiply \frac{1}{2-x} times \frac{-\left(x-2\right)x^{2}}{-\left(x-2\right)x^{2}}.
\frac{-4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right)}{x^{2}\left(x-2\right)^{2}}
Since \frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}} and \frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}}{x^{2}\left(x-2\right)^{2}}
Do the multiplications in -4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right).
\frac{-6x^{2}+8x-4+2x^{3}}{x^{2}\left(x-2\right)^{2}}
Combine like terms in -4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}.
\frac{-6x^{2}+8x-4+2x^{3}}{x^{4}-4x^{3}+4x^{2}}
Expand x^{2}\left(x-2\right)^{2}.
-\frac{1}{x^{2}}+\frac{x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{1}{x} times \frac{x}{x}.
\frac{-1+x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
Since -\frac{1}{x^{2}} and \frac{x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}}+\frac{x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-2\right)^{2} is x^{2}\left(x-2\right)^{2}. Multiply \frac{-1+x}{x^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(-1+x\right)\left(x-2\right)^{2}+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Since \frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}} and \frac{x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Do the multiplications in \left(-1+x\right)\left(x-2\right)^{2}+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Combine like terms in -x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}\left(x-2\right)^{2} and 2-x is x^{2}\left(x-2\right)^{2}. Multiply \frac{1}{2-x} times \frac{-\left(x-2\right)x^{2}}{-\left(x-2\right)x^{2}}.
\frac{-4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right)}{x^{2}\left(x-2\right)^{2}}
Since \frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}} and \frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}}{x^{2}\left(x-2\right)^{2}}
Do the multiplications in -4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right).
\frac{-6x^{2}+8x-4+2x^{3}}{x^{2}\left(x-2\right)^{2}}
Combine like terms in -4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}.
\frac{-6x^{2}+8x-4+2x^{3}}{x^{4}-4x^{3}+4x^{2}}
Expand x^{2}\left(x-2\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}