Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{x^{2}}+\frac{x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{1}{x} times \frac{x}{x}.
\frac{-1+x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
Since -\frac{1}{x^{2}} and \frac{x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}}+\frac{x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-2\right)^{2} is x^{2}\left(x-2\right)^{2}. Multiply \frac{-1+x}{x^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(-1+x\right)\left(x-2\right)^{2}+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Since \frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}} and \frac{x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Do the multiplications in \left(-1+x\right)\left(x-2\right)^{2}+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Combine like terms in -x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}\left(x-2\right)^{2} and 2-x is x^{2}\left(x-2\right)^{2}. Multiply \frac{1}{2-x} times \frac{-\left(x-2\right)x^{2}}{-\left(x-2\right)x^{2}}.
\frac{-4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right)}{x^{2}\left(x-2\right)^{2}}
Since \frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}} and \frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}}{x^{2}\left(x-2\right)^{2}}
Do the multiplications in -4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right).
\frac{-6x^{2}+8x-4+2x^{3}}{x^{2}\left(x-2\right)^{2}}
Combine like terms in -4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}.
\frac{-6x^{2}+8x-4+2x^{3}}{x^{4}-4x^{3}+4x^{2}}
Expand x^{2}\left(x-2\right)^{2}.
-\frac{1}{x^{2}}+\frac{x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and x is x^{2}. Multiply \frac{1}{x} times \frac{x}{x}.
\frac{-1+x}{x^{2}}+\frac{1}{\left(x-2\right)^{2}}-\frac{1}{2-x}
Since -\frac{1}{x^{2}} and \frac{x}{x^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}}+\frac{x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2} and \left(x-2\right)^{2} is x^{2}\left(x-2\right)^{2}. Multiply \frac{-1+x}{x^{2}} times \frac{\left(x-2\right)^{2}}{\left(x-2\right)^{2}}. Multiply \frac{1}{\left(x-2\right)^{2}} times \frac{x^{2}}{x^{2}}.
\frac{\left(-1+x\right)\left(x-2\right)^{2}+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Since \frac{\left(-1+x\right)\left(x-2\right)^{2}}{x^{2}\left(x-2\right)^{2}} and \frac{x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{-x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Do the multiplications in \left(-1+x\right)\left(x-2\right)^{2}+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{1}{2-x}
Combine like terms in -x^{2}+4x-4+x^{3}-4x^{2}+4x+x^{2}.
\frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}}-\frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x^{2}\left(x-2\right)^{2} and 2-x is x^{2}\left(x-2\right)^{2}. Multiply \frac{1}{2-x} times \frac{-\left(x-2\right)x^{2}}{-\left(x-2\right)x^{2}}.
\frac{-4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right)}{x^{2}\left(x-2\right)^{2}}
Since \frac{-4x^{2}+8x-4+x^{3}}{x^{2}\left(x-2\right)^{2}} and \frac{-\left(x-2\right)x^{2}}{x^{2}\left(x-2\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{-4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}}{x^{2}\left(x-2\right)^{2}}
Do the multiplications in -4x^{2}+8x-4+x^{3}-\left(-\left(x-2\right)x^{2}\right).
\frac{-6x^{2}+8x-4+2x^{3}}{x^{2}\left(x-2\right)^{2}}
Combine like terms in -4x^{2}+8x-4+x^{3}+x^{3}-2x^{2}.
\frac{-6x^{2}+8x-4+2x^{3}}{x^{4}-4x^{3}+4x^{2}}
Expand x^{2}\left(x-2\right)^{2}.