Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{7}x+\frac{3}{7}=\frac{4}{3}\left(x^{2}-2x+1\right)+\frac{16}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{1}{7}x+\frac{3}{7}=\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}+\frac{16}{3}
Use the distributive property to multiply \frac{4}{3} by x^{2}-2x+1.
-\frac{1}{7}x+\frac{3}{7}=\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{20}{3}
Add \frac{4}{3} and \frac{16}{3} to get \frac{20}{3}.
-\frac{1}{7}x+\frac{3}{7}-\frac{4}{3}x^{2}=-\frac{8}{3}x+\frac{20}{3}
Subtract \frac{4}{3}x^{2} from both sides.
-\frac{1}{7}x+\frac{3}{7}-\frac{4}{3}x^{2}+\frac{8}{3}x=\frac{20}{3}
Add \frac{8}{3}x to both sides.
\frac{53}{21}x+\frac{3}{7}-\frac{4}{3}x^{2}=\frac{20}{3}
Combine -\frac{1}{7}x and \frac{8}{3}x to get \frac{53}{21}x.
\frac{53}{21}x+\frac{3}{7}-\frac{4}{3}x^{2}-\frac{20}{3}=0
Subtract \frac{20}{3} from both sides.
\frac{53}{21}x-\frac{131}{21}-\frac{4}{3}x^{2}=0
Subtract \frac{20}{3} from \frac{3}{7} to get -\frac{131}{21}.
-\frac{4}{3}x^{2}+\frac{53}{21}x-\frac{131}{21}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{53}{21}±\sqrt{\left(\frac{53}{21}\right)^{2}-4\left(-\frac{4}{3}\right)\left(-\frac{131}{21}\right)}}{2\left(-\frac{4}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{4}{3} for a, \frac{53}{21} for b, and -\frac{131}{21} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{53}{21}±\sqrt{\frac{2809}{441}-4\left(-\frac{4}{3}\right)\left(-\frac{131}{21}\right)}}{2\left(-\frac{4}{3}\right)}
Square \frac{53}{21} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{53}{21}±\sqrt{\frac{2809}{441}+\frac{16}{3}\left(-\frac{131}{21}\right)}}{2\left(-\frac{4}{3}\right)}
Multiply -4 times -\frac{4}{3}.
x=\frac{-\frac{53}{21}±\sqrt{\frac{2809}{441}-\frac{2096}{63}}}{2\left(-\frac{4}{3}\right)}
Multiply \frac{16}{3} times -\frac{131}{21} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{53}{21}±\sqrt{-\frac{11863}{441}}}{2\left(-\frac{4}{3}\right)}
Add \frac{2809}{441} to -\frac{2096}{63} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{53}{21}±\frac{\sqrt{11863}i}{21}}{2\left(-\frac{4}{3}\right)}
Take the square root of -\frac{11863}{441}.
x=\frac{-\frac{53}{21}±\frac{\sqrt{11863}i}{21}}{-\frac{8}{3}}
Multiply 2 times -\frac{4}{3}.
x=\frac{-53+\sqrt{11863}i}{-\frac{8}{3}\times 21}
Now solve the equation x=\frac{-\frac{53}{21}±\frac{\sqrt{11863}i}{21}}{-\frac{8}{3}} when ± is plus. Add -\frac{53}{21} to \frac{i\sqrt{11863}}{21}.
x=\frac{-\sqrt{11863}i+53}{56}
Divide \frac{-53+i\sqrt{11863}}{21} by -\frac{8}{3} by multiplying \frac{-53+i\sqrt{11863}}{21} by the reciprocal of -\frac{8}{3}.
x=\frac{-\sqrt{11863}i-53}{-\frac{8}{3}\times 21}
Now solve the equation x=\frac{-\frac{53}{21}±\frac{\sqrt{11863}i}{21}}{-\frac{8}{3}} when ± is minus. Subtract \frac{i\sqrt{11863}}{21} from -\frac{53}{21}.
x=\frac{53+\sqrt{11863}i}{56}
Divide \frac{-53-i\sqrt{11863}}{21} by -\frac{8}{3} by multiplying \frac{-53-i\sqrt{11863}}{21} by the reciprocal of -\frac{8}{3}.
x=\frac{-\sqrt{11863}i+53}{56} x=\frac{53+\sqrt{11863}i}{56}
The equation is now solved.
-\frac{1}{7}x+\frac{3}{7}=\frac{4}{3}\left(x^{2}-2x+1\right)+\frac{16}{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
-\frac{1}{7}x+\frac{3}{7}=\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{4}{3}+\frac{16}{3}
Use the distributive property to multiply \frac{4}{3} by x^{2}-2x+1.
-\frac{1}{7}x+\frac{3}{7}=\frac{4}{3}x^{2}-\frac{8}{3}x+\frac{20}{3}
Add \frac{4}{3} and \frac{16}{3} to get \frac{20}{3}.
-\frac{1}{7}x+\frac{3}{7}-\frac{4}{3}x^{2}=-\frac{8}{3}x+\frac{20}{3}
Subtract \frac{4}{3}x^{2} from both sides.
-\frac{1}{7}x+\frac{3}{7}-\frac{4}{3}x^{2}+\frac{8}{3}x=\frac{20}{3}
Add \frac{8}{3}x to both sides.
\frac{53}{21}x+\frac{3}{7}-\frac{4}{3}x^{2}=\frac{20}{3}
Combine -\frac{1}{7}x and \frac{8}{3}x to get \frac{53}{21}x.
\frac{53}{21}x-\frac{4}{3}x^{2}=\frac{20}{3}-\frac{3}{7}
Subtract \frac{3}{7} from both sides.
\frac{53}{21}x-\frac{4}{3}x^{2}=\frac{131}{21}
Subtract \frac{3}{7} from \frac{20}{3} to get \frac{131}{21}.
-\frac{4}{3}x^{2}+\frac{53}{21}x=\frac{131}{21}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{4}{3}x^{2}+\frac{53}{21}x}{-\frac{4}{3}}=\frac{\frac{131}{21}}{-\frac{4}{3}}
Divide both sides of the equation by -\frac{4}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{53}{21}}{-\frac{4}{3}}x=\frac{\frac{131}{21}}{-\frac{4}{3}}
Dividing by -\frac{4}{3} undoes the multiplication by -\frac{4}{3}.
x^{2}-\frac{53}{28}x=\frac{\frac{131}{21}}{-\frac{4}{3}}
Divide \frac{53}{21} by -\frac{4}{3} by multiplying \frac{53}{21} by the reciprocal of -\frac{4}{3}.
x^{2}-\frac{53}{28}x=-\frac{131}{28}
Divide \frac{131}{21} by -\frac{4}{3} by multiplying \frac{131}{21} by the reciprocal of -\frac{4}{3}.
x^{2}-\frac{53}{28}x+\left(-\frac{53}{56}\right)^{2}=-\frac{131}{28}+\left(-\frac{53}{56}\right)^{2}
Divide -\frac{53}{28}, the coefficient of the x term, by 2 to get -\frac{53}{56}. Then add the square of -\frac{53}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{53}{28}x+\frac{2809}{3136}=-\frac{131}{28}+\frac{2809}{3136}
Square -\frac{53}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{53}{28}x+\frac{2809}{3136}=-\frac{11863}{3136}
Add -\frac{131}{28} to \frac{2809}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{53}{56}\right)^{2}=-\frac{11863}{3136}
Factor x^{2}-\frac{53}{28}x+\frac{2809}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{53}{56}\right)^{2}}=\sqrt{-\frac{11863}{3136}}
Take the square root of both sides of the equation.
x-\frac{53}{56}=\frac{\sqrt{11863}i}{56} x-\frac{53}{56}=-\frac{\sqrt{11863}i}{56}
Simplify.
x=\frac{53+\sqrt{11863}i}{56} x=\frac{-\sqrt{11863}i+53}{56}
Add \frac{53}{56} to both sides of the equation.