Evaluate
-1
Factor
-1
Share
Copied to clipboard
-\frac{2}{14}+\frac{35}{14}-\frac{3}{14}+\frac{4}{21}-\frac{10}{3}
Least common multiple of 7 and 2 is 14. Convert -\frac{1}{7} and \frac{5}{2} to fractions with denominator 14.
\frac{-2+35}{14}-\frac{3}{14}+\frac{4}{21}-\frac{10}{3}
Since -\frac{2}{14} and \frac{35}{14} have the same denominator, add them by adding their numerators.
\frac{33}{14}-\frac{3}{14}+\frac{4}{21}-\frac{10}{3}
Add -2 and 35 to get 33.
\frac{33-3}{14}+\frac{4}{21}-\frac{10}{3}
Since \frac{33}{14} and \frac{3}{14} have the same denominator, subtract them by subtracting their numerators.
\frac{30}{14}+\frac{4}{21}-\frac{10}{3}
Subtract 3 from 33 to get 30.
\frac{15}{7}+\frac{4}{21}-\frac{10}{3}
Reduce the fraction \frac{30}{14} to lowest terms by extracting and canceling out 2.
\frac{45}{21}+\frac{4}{21}-\frac{10}{3}
Least common multiple of 7 and 21 is 21. Convert \frac{15}{7} and \frac{4}{21} to fractions with denominator 21.
\frac{45+4}{21}-\frac{10}{3}
Since \frac{45}{21} and \frac{4}{21} have the same denominator, add them by adding their numerators.
\frac{49}{21}-\frac{10}{3}
Add 45 and 4 to get 49.
\frac{7}{3}-\frac{10}{3}
Reduce the fraction \frac{49}{21} to lowest terms by extracting and canceling out 7.
\frac{7-10}{3}
Since \frac{7}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{-3}{3}
Subtract 10 from 7 to get -3.
-1
Divide -3 by 3 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}