Solve for y
y=5
Graph
Share
Copied to clipboard
-\frac{1}{6}y+\frac{5}{6}-\frac{1}{4}y=-\frac{5}{4}
Subtract \frac{1}{4}y from both sides.
-\frac{5}{12}y+\frac{5}{6}=-\frac{5}{4}
Combine -\frac{1}{6}y and -\frac{1}{4}y to get -\frac{5}{12}y.
-\frac{5}{12}y=-\frac{5}{4}-\frac{5}{6}
Subtract \frac{5}{6} from both sides.
-\frac{5}{12}y=-\frac{15}{12}-\frac{10}{12}
Least common multiple of 4 and 6 is 12. Convert -\frac{5}{4} and \frac{5}{6} to fractions with denominator 12.
-\frac{5}{12}y=\frac{-15-10}{12}
Since -\frac{15}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}y=-\frac{25}{12}
Subtract 10 from -15 to get -25.
y=-\frac{25}{12}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
y=\frac{-25\left(-12\right)}{12\times 5}
Multiply -\frac{25}{12} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
y=\frac{300}{60}
Do the multiplications in the fraction \frac{-25\left(-12\right)}{12\times 5}.
y=5
Divide 300 by 60 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}