Solve for x
x\geq \frac{11}{8}
Graph
Share
Copied to clipboard
-2x-3\left(2x-5\right)\geq 36-4\left(8x-3\right)
Multiply both sides of the equation by 12, the least common multiple of 6,4,3. Since 12 is positive, the inequality direction remains the same.
-2x-6x+15\geq 36-4\left(8x-3\right)
Use the distributive property to multiply -3 by 2x-5.
-8x+15\geq 36-4\left(8x-3\right)
Combine -2x and -6x to get -8x.
-8x+15\geq 36-32x+12
Use the distributive property to multiply -4 by 8x-3.
-8x+15\geq 48-32x
Add 36 and 12 to get 48.
-8x+15+32x\geq 48
Add 32x to both sides.
24x+15\geq 48
Combine -8x and 32x to get 24x.
24x\geq 48-15
Subtract 15 from both sides.
24x\geq 33
Subtract 15 from 48 to get 33.
x\geq \frac{33}{24}
Divide both sides by 24. Since 24 is positive, the inequality direction remains the same.
x\geq \frac{11}{8}
Reduce the fraction \frac{33}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}