Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{-6}{6\times 7}+\frac{4}{5}\left(-\frac{1}{3}\right)+\frac{1}{3}\times \frac{1}{-1}
Multiply -\frac{1}{6} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{7}+\frac{4}{5}\left(-\frac{1}{3}\right)+\frac{1}{3}\times \frac{1}{-1}
Cancel out 6 in both numerator and denominator.
-\frac{1}{7}+\frac{4}{5}\left(-\frac{1}{3}\right)+\frac{1}{3}\times \frac{1}{-1}
Fraction \frac{-1}{7} can be rewritten as -\frac{1}{7} by extracting the negative sign.
-\frac{1}{7}+\frac{4\left(-1\right)}{5\times 3}+\frac{1}{3}\times \frac{1}{-1}
Multiply \frac{4}{5} times -\frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
-\frac{1}{7}+\frac{-4}{15}+\frac{1}{3}\times \frac{1}{-1}
Do the multiplications in the fraction \frac{4\left(-1\right)}{5\times 3}.
-\frac{1}{7}-\frac{4}{15}+\frac{1}{3}\times \frac{1}{-1}
Fraction \frac{-4}{15} can be rewritten as -\frac{4}{15} by extracting the negative sign.
-\frac{15}{105}-\frac{28}{105}+\frac{1}{3}\times \frac{1}{-1}
Least common multiple of 7 and 15 is 105. Convert -\frac{1}{7} and \frac{4}{15} to fractions with denominator 105.
\frac{-15-28}{105}+\frac{1}{3}\times \frac{1}{-1}
Since -\frac{15}{105} and \frac{28}{105} have the same denominator, subtract them by subtracting their numerators.
-\frac{43}{105}+\frac{1}{3}\times \frac{1}{-1}
Subtract 28 from -15 to get -43.
-\frac{43}{105}+\frac{1}{3}\left(-1\right)
Divide 1 by -1 to get -1.
-\frac{43}{105}-\frac{1}{3}
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
-\frac{43}{105}-\frac{35}{105}
Least common multiple of 105 and 3 is 105. Convert -\frac{43}{105} and \frac{1}{3} to fractions with denominator 105.
\frac{-43-35}{105}
Since -\frac{43}{105} and \frac{35}{105} have the same denominator, subtract them by subtracting their numerators.
\frac{-78}{105}
Subtract 35 from -43 to get -78.
-\frac{26}{35}
Reduce the fraction \frac{-78}{105} to lowest terms by extracting and canceling out 3.