Evaluate
\frac{11}{20}=0.55
Factor
\frac{11}{2 ^ {2} \cdot 5} = 0.55
Share
Copied to clipboard
-\frac{1}{6}+\frac{1}{1+\frac{1}{4}}-\frac{1}{12}
The opposite of -\frac{1}{4} is \frac{1}{4}.
-\frac{1}{6}+\frac{1}{\frac{4}{4}+\frac{1}{4}}-\frac{1}{12}
Convert 1 to fraction \frac{4}{4}.
-\frac{1}{6}+\frac{1}{\frac{4+1}{4}}-\frac{1}{12}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
-\frac{1}{6}+\frac{1}{\frac{5}{4}}-\frac{1}{12}
Add 4 and 1 to get 5.
-\frac{1}{6}+1\times \frac{4}{5}-\frac{1}{12}
Divide 1 by \frac{5}{4} by multiplying 1 by the reciprocal of \frac{5}{4}.
-\frac{1}{6}+\frac{4}{5}-\frac{1}{12}
Multiply 1 and \frac{4}{5} to get \frac{4}{5}.
-\frac{5}{30}+\frac{24}{30}-\frac{1}{12}
Least common multiple of 6 and 5 is 30. Convert -\frac{1}{6} and \frac{4}{5} to fractions with denominator 30.
\frac{-5+24}{30}-\frac{1}{12}
Since -\frac{5}{30} and \frac{24}{30} have the same denominator, add them by adding their numerators.
\frac{19}{30}-\frac{1}{12}
Add -5 and 24 to get 19.
\frac{38}{60}-\frac{5}{60}
Least common multiple of 30 and 12 is 60. Convert \frac{19}{30} and \frac{1}{12} to fractions with denominator 60.
\frac{38-5}{60}
Since \frac{38}{60} and \frac{5}{60} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{60}
Subtract 5 from 38 to get 33.
\frac{11}{20}
Reduce the fraction \frac{33}{60} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}