Solve for p
p=10\sqrt{35}+50\approx 109.160797831
p=50-10\sqrt{35}\approx -9.160797831
Share
Copied to clipboard
-\frac{1}{50}p^{2}+2p+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{50}\right)\times 20}}{2\left(-\frac{1}{50}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{50} for a, 2 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-2±\sqrt{4-4\left(-\frac{1}{50}\right)\times 20}}{2\left(-\frac{1}{50}\right)}
Square 2.
p=\frac{-2±\sqrt{4+\frac{2}{25}\times 20}}{2\left(-\frac{1}{50}\right)}
Multiply -4 times -\frac{1}{50}.
p=\frac{-2±\sqrt{4+\frac{8}{5}}}{2\left(-\frac{1}{50}\right)}
Multiply \frac{2}{25} times 20.
p=\frac{-2±\sqrt{\frac{28}{5}}}{2\left(-\frac{1}{50}\right)}
Add 4 to \frac{8}{5}.
p=\frac{-2±\frac{2\sqrt{35}}{5}}{2\left(-\frac{1}{50}\right)}
Take the square root of \frac{28}{5}.
p=\frac{-2±\frac{2\sqrt{35}}{5}}{-\frac{1}{25}}
Multiply 2 times -\frac{1}{50}.
p=\frac{\frac{2\sqrt{35}}{5}-2}{-\frac{1}{25}}
Now solve the equation p=\frac{-2±\frac{2\sqrt{35}}{5}}{-\frac{1}{25}} when ± is plus. Add -2 to \frac{2\sqrt{35}}{5}.
p=50-10\sqrt{35}
Divide -2+\frac{2\sqrt{35}}{5} by -\frac{1}{25} by multiplying -2+\frac{2\sqrt{35}}{5} by the reciprocal of -\frac{1}{25}.
p=\frac{-\frac{2\sqrt{35}}{5}-2}{-\frac{1}{25}}
Now solve the equation p=\frac{-2±\frac{2\sqrt{35}}{5}}{-\frac{1}{25}} when ± is minus. Subtract \frac{2\sqrt{35}}{5} from -2.
p=10\sqrt{35}+50
Divide -2-\frac{2\sqrt{35}}{5} by -\frac{1}{25} by multiplying -2-\frac{2\sqrt{35}}{5} by the reciprocal of -\frac{1}{25}.
p=50-10\sqrt{35} p=10\sqrt{35}+50
The equation is now solved.
-\frac{1}{50}p^{2}+2p+20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-\frac{1}{50}p^{2}+2p+20-20=-20
Subtract 20 from both sides of the equation.
-\frac{1}{50}p^{2}+2p=-20
Subtracting 20 from itself leaves 0.
\frac{-\frac{1}{50}p^{2}+2p}{-\frac{1}{50}}=-\frac{20}{-\frac{1}{50}}
Multiply both sides by -50.
p^{2}+\frac{2}{-\frac{1}{50}}p=-\frac{20}{-\frac{1}{50}}
Dividing by -\frac{1}{50} undoes the multiplication by -\frac{1}{50}.
p^{2}-100p=-\frac{20}{-\frac{1}{50}}
Divide 2 by -\frac{1}{50} by multiplying 2 by the reciprocal of -\frac{1}{50}.
p^{2}-100p=1000
Divide -20 by -\frac{1}{50} by multiplying -20 by the reciprocal of -\frac{1}{50}.
p^{2}-100p+\left(-50\right)^{2}=1000+\left(-50\right)^{2}
Divide -100, the coefficient of the x term, by 2 to get -50. Then add the square of -50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-100p+2500=1000+2500
Square -50.
p^{2}-100p+2500=3500
Add 1000 to 2500.
\left(p-50\right)^{2}=3500
Factor p^{2}-100p+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-50\right)^{2}}=\sqrt{3500}
Take the square root of both sides of the equation.
p-50=10\sqrt{35} p-50=-10\sqrt{35}
Simplify.
p=10\sqrt{35}+50 p=50-10\sqrt{35}
Add 50 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}