Solve for x (complex solution)
x=-\sqrt{65}i+3\approx 3-8.062257748i
x=3+\sqrt{65}i\approx 3+8.062257748i
Graph
Share
Copied to clipboard
-\frac{1}{5}\left(x-3\right)^{2}=18-5
Subtracting 5 from itself leaves 0.
-\frac{1}{5}\left(x-3\right)^{2}=13
Subtract 5 from 18.
\frac{-\frac{1}{5}\left(x-3\right)^{2}}{-\frac{1}{5}}=\frac{13}{-\frac{1}{5}}
Multiply both sides by -5.
\left(x-3\right)^{2}=\frac{13}{-\frac{1}{5}}
Dividing by -\frac{1}{5} undoes the multiplication by -\frac{1}{5}.
\left(x-3\right)^{2}=-65
Divide 13 by -\frac{1}{5} by multiplying 13 by the reciprocal of -\frac{1}{5}.
x-3=\sqrt{65}i x-3=-\sqrt{65}i
Take the square root of both sides of the equation.
x-3-\left(-3\right)=\sqrt{65}i-\left(-3\right) x-3-\left(-3\right)=-\sqrt{65}i-\left(-3\right)
Add 3 to both sides of the equation.
x=\sqrt{65}i-\left(-3\right) x=-\sqrt{65}i-\left(-3\right)
Subtracting -3 from itself leaves 0.
x=3+\sqrt{65}i
Subtract -3 from i\sqrt{65}.
x=-\sqrt{65}i+3
Subtract -3 from -i\sqrt{65}.
x=3+\sqrt{65}i x=-\sqrt{65}i+3
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}