Evaluate
\sqrt{6}+2\sqrt{265}-7\sqrt{5}\approx 19.354655092
Factor
\sqrt{6} + 2 \sqrt{265} - 7 \sqrt{5} = 19.354655092
Share
Copied to clipboard
-\frac{1}{5}\times 10\sqrt{5}-\sqrt{125}+\frac{3}{2}\sqrt{\frac{8}{3}}+2\sqrt{265}
Factor 500=10^{2}\times 5. Rewrite the square root of the product \sqrt{10^{2}\times 5} as the product of square roots \sqrt{10^{2}}\sqrt{5}. Take the square root of 10^{2}.
\frac{-10}{5}\sqrt{5}-\sqrt{125}+\frac{3}{2}\sqrt{\frac{8}{3}}+2\sqrt{265}
Express -\frac{1}{5}\times 10 as a single fraction.
-2\sqrt{5}-\sqrt{125}+\frac{3}{2}\sqrt{\frac{8}{3}}+2\sqrt{265}
Divide -10 by 5 to get -2.
-2\sqrt{5}-5\sqrt{5}+\frac{3}{2}\sqrt{\frac{8}{3}}+2\sqrt{265}
Factor 125=5^{2}\times 5. Rewrite the square root of the product \sqrt{5^{2}\times 5} as the product of square roots \sqrt{5^{2}}\sqrt{5}. Take the square root of 5^{2}.
-7\sqrt{5}+\frac{3}{2}\sqrt{\frac{8}{3}}+2\sqrt{265}
Combine -2\sqrt{5} and -5\sqrt{5} to get -7\sqrt{5}.
-7\sqrt{5}+\frac{3}{2}\times \frac{\sqrt{8}}{\sqrt{3}}+2\sqrt{265}
Rewrite the square root of the division \sqrt{\frac{8}{3}} as the division of square roots \frac{\sqrt{8}}{\sqrt{3}}.
-7\sqrt{5}+\frac{3}{2}\times \frac{2\sqrt{2}}{\sqrt{3}}+2\sqrt{265}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
-7\sqrt{5}+\frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+2\sqrt{265}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-7\sqrt{5}+\frac{3}{2}\times \frac{2\sqrt{2}\sqrt{3}}{3}+2\sqrt{265}
The square of \sqrt{3} is 3.
-7\sqrt{5}+\frac{3}{2}\times \frac{2\sqrt{6}}{3}+2\sqrt{265}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
-7\sqrt{5}+\frac{3\times 2\sqrt{6}}{2\times 3}+2\sqrt{265}
Multiply \frac{3}{2} times \frac{2\sqrt{6}}{3} by multiplying numerator times numerator and denominator times denominator.
-7\sqrt{5}+\sqrt{6}+2\sqrt{265}
Cancel out 2\times 3 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}