Solve for x
x = -\frac{16}{3} = -5\frac{1}{3} \approx -5.333333333
x=2
Graph
Share
Copied to clipboard
-\frac{1}{4}x^{2}-\frac{1}{2}x+2=\frac{1}{3}x-\frac{2}{3}
Use the distributive property to multiply \frac{1}{3} by x-2.
-\frac{1}{4}x^{2}-\frac{1}{2}x+2-\frac{1}{3}x=-\frac{2}{3}
Subtract \frac{1}{3}x from both sides.
-\frac{1}{4}x^{2}-\frac{5}{6}x+2=-\frac{2}{3}
Combine -\frac{1}{2}x and -\frac{1}{3}x to get -\frac{5}{6}x.
-\frac{1}{4}x^{2}-\frac{5}{6}x+2+\frac{2}{3}=0
Add \frac{2}{3} to both sides.
-\frac{1}{4}x^{2}-\frac{5}{6}x+\frac{8}{3}=0
Add 2 and \frac{2}{3} to get \frac{8}{3}.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\left(-\frac{5}{6}\right)^{2}-4\left(-\frac{1}{4}\right)\times \frac{8}{3}}}{2\left(-\frac{1}{4}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{4} for a, -\frac{5}{6} for b, and \frac{8}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{25}{36}-4\left(-\frac{1}{4}\right)\times \frac{8}{3}}}{2\left(-\frac{1}{4}\right)}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{25}{36}+\frac{8}{3}}}{2\left(-\frac{1}{4}\right)}
Multiply -4 times -\frac{1}{4}.
x=\frac{-\left(-\frac{5}{6}\right)±\sqrt{\frac{121}{36}}}{2\left(-\frac{1}{4}\right)}
Add \frac{25}{36} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{5}{6}\right)±\frac{11}{6}}{2\left(-\frac{1}{4}\right)}
Take the square root of \frac{121}{36}.
x=\frac{\frac{5}{6}±\frac{11}{6}}{2\left(-\frac{1}{4}\right)}
The opposite of -\frac{5}{6} is \frac{5}{6}.
x=\frac{\frac{5}{6}±\frac{11}{6}}{-\frac{1}{2}}
Multiply 2 times -\frac{1}{4}.
x=\frac{\frac{8}{3}}{-\frac{1}{2}}
Now solve the equation x=\frac{\frac{5}{6}±\frac{11}{6}}{-\frac{1}{2}} when ± is plus. Add \frac{5}{6} to \frac{11}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{16}{3}
Divide \frac{8}{3} by -\frac{1}{2} by multiplying \frac{8}{3} by the reciprocal of -\frac{1}{2}.
x=-\frac{1}{-\frac{1}{2}}
Now solve the equation x=\frac{\frac{5}{6}±\frac{11}{6}}{-\frac{1}{2}} when ± is minus. Subtract \frac{11}{6} from \frac{5}{6} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=2
Divide -1 by -\frac{1}{2} by multiplying -1 by the reciprocal of -\frac{1}{2}.
x=-\frac{16}{3} x=2
The equation is now solved.
-\frac{1}{4}x^{2}-\frac{1}{2}x+2=\frac{1}{3}x-\frac{2}{3}
Use the distributive property to multiply \frac{1}{3} by x-2.
-\frac{1}{4}x^{2}-\frac{1}{2}x+2-\frac{1}{3}x=-\frac{2}{3}
Subtract \frac{1}{3}x from both sides.
-\frac{1}{4}x^{2}-\frac{5}{6}x+2=-\frac{2}{3}
Combine -\frac{1}{2}x and -\frac{1}{3}x to get -\frac{5}{6}x.
-\frac{1}{4}x^{2}-\frac{5}{6}x=-\frac{2}{3}-2
Subtract 2 from both sides.
-\frac{1}{4}x^{2}-\frac{5}{6}x=-\frac{8}{3}
Subtract 2 from -\frac{2}{3} to get -\frac{8}{3}.
\frac{-\frac{1}{4}x^{2}-\frac{5}{6}x}{-\frac{1}{4}}=-\frac{\frac{8}{3}}{-\frac{1}{4}}
Multiply both sides by -4.
x^{2}+\left(-\frac{\frac{5}{6}}{-\frac{1}{4}}\right)x=-\frac{\frac{8}{3}}{-\frac{1}{4}}
Dividing by -\frac{1}{4} undoes the multiplication by -\frac{1}{4}.
x^{2}+\frac{10}{3}x=-\frac{\frac{8}{3}}{-\frac{1}{4}}
Divide -\frac{5}{6} by -\frac{1}{4} by multiplying -\frac{5}{6} by the reciprocal of -\frac{1}{4}.
x^{2}+\frac{10}{3}x=\frac{32}{3}
Divide -\frac{8}{3} by -\frac{1}{4} by multiplying -\frac{8}{3} by the reciprocal of -\frac{1}{4}.
x^{2}+\frac{10}{3}x+\left(\frac{5}{3}\right)^{2}=\frac{32}{3}+\left(\frac{5}{3}\right)^{2}
Divide \frac{10}{3}, the coefficient of the x term, by 2 to get \frac{5}{3}. Then add the square of \frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{32}{3}+\frac{25}{9}
Square \frac{5}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10}{3}x+\frac{25}{9}=\frac{121}{9}
Add \frac{32}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}+\frac{10}{3}x+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x+\frac{5}{3}=\frac{11}{3} x+\frac{5}{3}=-\frac{11}{3}
Simplify.
x=2 x=-\frac{16}{3}
Subtract \frac{5}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}